Skip to main content

Mechanically-Evoked TRPV4-Mediated Currents Are Modulated by Activated Integrin β1

  • Conference paper
  • First Online:
Mechanobiology (ISMB 2022)

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 25))

Included in the following conference series:

  • 75 Accesses

Abstract.

TRPV4 is a polymodal, non-selective cation channel which can be activated by mechanical stimuli only when they are applied directly at the cell-substrate interface. This restricted profile of mechanical activation suggests that mechanical gating of TRPV4 is highly dependent on either the specific physical context or molecular interaction partners within this cellular compartment. However, it is presently unknown what aspects of the cell-substrate interface confer mechanosensitivity to TRPV4. Integrin β1 has previously been indirectly linked to the mechanical activation of TRPV4 but this link has not yet been investigated in assays where it is clear that the gating stimulus was the mechanical input. We therefore aimed to test whether increasing integrin β1 activation could sensitise TRPV4-mediated, mechanically-evoked currents using whole-cell patch-clamp electrophysiology combined with a technique to apply mechanical stimuli directly at cell-substrate connections. We found that TRPV4-mediated currents were sensitised when integrin β1 was activated using the functional anti-integrin β1 [12G10] antibody. However, activation of integrin β1 using fibronectin-coated substrates only lead to minor increases in TRPV4 sensitivity. These data suggest that mechanical signalling via TRPV4 in the cell-substrate interface can be tuned by the activation state of integrin β1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Alessandri-Haber N, Dina OA, Joseph EK, Reichling DB, Levine JD (2008) Interaction of transient receptor potential vanilloid 4, integrin, and Src tyrosine kinase in mechanical hyperalgesia. J Neurosci 28(5). https://doi.org/10.1523/JNEUROSCI.4497-07.2008

  2. Arora PD, Di Gregorio M, He P, McCulloch CA (2017) TRPV4 mediates the Ca2+ influx required for the interaction between flightless-1 and non-muscle myosin, and collagen remodeling. J Cell Sci 130(13):2196–2208. https://doi.org/10.1242/jcs.201665

    Article  CAS  PubMed  Google Scholar 

  3. Baratchi S, Knoerzer M, Khoshmanesh K, Mitchell A, McIntyre P (2017) Shear stress regulates TRPV4 channel clustering and translocation from adherens junctions to the basal membrane. Sci Rep 7(1):1. https://doi.org/10.1038/s41598-017-16276-7

    Article  CAS  Google Scholar 

  4. Bavi N, Richardson J, Heu C, Martinac B, Poole K (2019) PIEZO1-mediated currents are modulated by substrate mechanics [Research-article]. ACS Nano 13:13545–13559. https://doi.org/10.1021/acsnano.9b07499

    Article  CAS  PubMed  Google Scholar 

  5. Becker D, Bereiter-Hahn J, Jendrach M (2009) Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur J Cell Biol 88(3):3. https://doi.org/10.1016/j.ejcb.2008.10.002

    Article  CAS  Google Scholar 

  6. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8(7):7. https://doi.org/10.1038/nrn2149

    Article  CAS  Google Scholar 

  7. Darby WG, Grace MS, Baratchi S, McIntyre P (2016) Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol 78:217–228. https://doi.org/10.1016/j.biocel.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  8. Dubin AE, Murthy S, Lewis AH, Brosse L, Cahalan SM, Grandl J, Coste B, Patapoutian A (2017) Endogenous piezo1 can confound mechanically activated channel identification and characterization. Neuron 94(2):266–270. https://doi.org/10.1016/j.neuron.2017.03.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls α5 β1 function. Science 323(5914):642–644. https://doi.org/10.1126/science.1168441

  10. Goswami C, Kuhn J, Heppenstall PA, Hucho T (2010) Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS One 5(7):7. https://doi.org/10.1371/journal.pone.0011654

    Article  CAS  Google Scholar 

  11. Huai J, Zhang Y, Liu Q-M, Ge H-Y, Arendt-Nielsen L, Jiang H, Yue S-W (2012) Interaction of transient receptor potential vanilloid 4 with annexin A2 and tubulin beta 5. Neurosci Lett 512(1):22–27. https://doi.org/10.1016/j.neulet.2012.01.048

    Article  CAS  PubMed  Google Scholar 

  12. Jablonski CL, Ferguson S, Pozzi A, Clark AL (2014) Integrin α1β1 participates in chondrocyte transduction of osmotic stress. Biochem Biophys Res Commun 445(1):184–190. https://doi.org/10.1016/j.bbrc.2014.01.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA, McNulty AL, Wu J, Beicker KN, Coles J, Zauscher S, Grandl J, Sachs F, Guilak F, Liedtke WB (2014) Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci 111(47):47. https://doi.org/10.1073/pnas.1414298111

    Article  CAS  Google Scholar 

  14. Loukin S, Su Z, Zhou X, Kung C (2010) Forward genetic analysis reveals multiple gating mechanisms of TRPV4. J Biol Chem 285(26):26. https://doi.org/10.1074/jbc.M110.113936

    Article  CAS  Google Scholar 

  15. Lukacs V, Mathur J, Mao R, Bayrak-Toydemir P, Procter M, Cahalan SM, Kim HJ, Bandell M, Longo N, Day RW, Stevenson DA, Patapoutian A, Krock BL (2015) Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat Commun 6(1):8329. https://doi.org/10.1038/ncomms9329

    Article  CAS  PubMed  Google Scholar 

  16. Lyons JS, Joca HC, Law RA, Williams KM, Kerr JP, Shi G, Khairallah RJ, Martin SS, Konstantopoulos K, Ward CW, Stains JP (2017) Microtubules tune mechanotransduction through NOX2 and TRPV4 to decrease sclerostin abundance in osteocytes. Sci Signal 10(506):506. https://doi.org/10.1126/scisignal.aan5748

    Article  CAS  Google Scholar 

  17. Matthews BD, Thodeti CK, Tytell JD, Mammoto A, Overby DR, Ingber DE (2010) Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface β1 integrins. Integr Biol 2(9):435–442. https://doi.org/10.1039/c0ib00034e

    Article  CAS  Google Scholar 

  18. McHugh BJ, Buttery R, Lad Y, Banks S, Haslett C, Sethi T (2010) Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic reticulum. J Cell Sci 123:51–61. https://doi.org/10.1242/jcs.056424

    Article  PubMed  Google Scholar 

  19. Mould AP, Garratt AN, Askari JA, Akiyama SK, Humphries MJ (1995) Identification of a novel anti-integrin monoclonal antibody that recognises a ligand-induced binding site epitope on the β1 subunit. FEBS Lett 363(1–2):118–122. https://doi.org/10.1016/0014-5793(95)00301-O

    Article  CAS  PubMed  Google Scholar 

  20. Mussano F, Genova T, Laurenti M, Gaglioti D, Scarpellino G, Rivolo P, Faga MG, Fiorio Pla A, Munaron L, Mandracci P, Carossa S (2020) Beta1-integrin and TRPV4 are involved in osteoblast adhesion to different titanium surface topographies. Appl Surf Sci 507:145112. https://doi.org/10.1016/j.apsusc.2019.145112

    Article  CAS  Google Scholar 

  21. Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF, Vásquez V, Laver DR, Martinac B (2019) Mammalian TRP ion channels are insensitive to membrane stretch. J Cell Sci 132(23):jcs238360. https://doi.org/10.1242/jcs.238360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nilius B, Watanabe H, Vriens J (2003) The TRPV4 channel: structure-function relationship and promiscuous gating behaviour. Pflug Arch Eur J Physiol 446(3):3. https://doi.org/10.1007/s00424-003-1028-9

    Article  CAS  Google Scholar 

  23. O’Conor CJ, Griffin TM, Liedtke W, Guilak F (2013) Increased susceptibility of Trpv4-deficient mice to obesity and obesity-induced osteoarthritis with very high-fat diet. Ann Rheum Dis 72(2):2. https://doi.org/10.1136/annrheumdis-2012-202272

    Article  CAS  Google Scholar 

  24. O’Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F (2014) TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci 111(4):1316–1321. https://doi.org/10.1073/pnas.1319569111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Conor CJ, Ramalingam S, Zelenski NA, Benefield HC, Rigo I, Little D, Wu CL, Chen D, Liedtke W, McNulty AL, Guilak F (2016) Cartilage-specific knockout of the mechanosensory ion channel TRPV4 decreases age-related osteoarthritis. Sci Rep 6(July). https://doi.org/10.1038/srep29053

  26. Poole K (2022) The diverse physiological functions of mechanically activated ion channels in mammals. Annu Rev Physiol 84:307–329. https://doi.org/10.1146/annurev-physiol-060721-100935

    Article  CAS  PubMed  Google Scholar 

  27. Poole K, Herget R, Lapatsina L, Ngo H-DD, Lewin GR, Herget R, Lapatsina L, Ngo H-DD, Lewin GR, Herget R, Lapatsina L, Ngo H-DD, Lewin GR (2014) Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat Commun 5:3520. https://doi.org/10.1038/ncomms4520

    Article  CAS  PubMed  Google Scholar 

  28. Potla R, Hirano-Kobayashi M, Wu H, Chen H, Mammoto A, Matthews BD, Ingber DE (2020) Molecular mapping of transmembrane mechanotransduction through the β1 integrin–CD98hc–TRPV4 axis. J Cell Sci 133(20):jcs248823. https://doi.org/10.1242/jcs.248823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Servin-Vences M, Moroni M, Lewin GR, Poole K (2017) Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. elife 6:e21074. https://doi.org/10.7554/eLife.21074

    Article  PubMed  Google Scholar 

  30. Servin-Vences MR, Richardson J, Lewin GR, Poole K (2018) Mechanoelectrical transduction in chondrocytes. Clin Exp Pharmacol Physiol 45(5):5. https://doi.org/10.1111/1440-1681.12917

    Article  CAS  Google Scholar 

  31. Shrestha S, Richardson J, Poole K (2023) Analysing mechanically evoked currents at cell-substrate junctions. In: Zaidel-Bar R (ed) Mechanobiology, vol 2600. Springer US, pp 155–167. https://doi.org/10.1007/978-1-0716-2851-5_10

    Chapter  Google Scholar 

  32. Sianati S, Kurumlian A, Bailey E, Poole K (2019) Analysis of mechanically activated ion channels at the cell-substrate interface: combining pillar arrays and whole-cell patch-clamp. Front Bioeng Biotechnol 7(MAR):Article MAR. https://doi.org/10.3389/fbioe.2019.00047

    Article  Google Scholar 

  33. Sianati S, Schroeter L, Richardson J, Tay A, Lamande SR, Poole K (2021) Modulating the mechanical activation of TRPV4 at the cell-substrate interface. Front Bioeng Biotechnol 8:1527

    Article  Google Scholar 

  34. Sirianant L, Ousingsawat J, Wanitchakool P, Schreiber R, Kunzelmann K (2016) Cellular volume regulation by anoctamin 6: Ca 2+, phospholipase A2 and osmosensing. Pflug Arch Eur J Physiol 468(2):335–349

    Article  CAS  Google Scholar 

  35. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2(10):695–702. https://doi.org/10.1038/35036318

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki M, Hirao A, Mizuno A (2003) Microfilament-associated protein 7 increases the membrane expression of transient receptor potential vanilloid 4 (TRPV4). J Biol Chem 278(51):51448–51453. https://doi.org/10.1074/jbc.M308212200

    Article  CAS  PubMed  Google Scholar 

  37. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain–induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104(9):1123–1130. https://doi.org/10.1161/CIRCRESAHA.108.192930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci 101(1):396–401

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277(49):49. https://doi.org/10.1074/jbc.M208277200

    Article  Google Scholar 

  40. Xu H, Fu Y, Tian W, Cohen DM (2006) Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am J Physiol-Renal Physiol 290(5):F1103–F1109. https://doi.org/10.1152/ajprenal.00245.2005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work supported by a NHMRC project grant to KP (APP1122104) and an Australian Government RTP and UNSW School of Medical Sciences funded scholarship to JR. The HEK-293T PIEZO1 knockout cell line was kindly gifted by Ardem Patapoutian. Confocal imaging was conducted in the Katharina Gaus Light Microscopy Facility (KGLMF), at the UNSW Mark Wainwright Analytical Centre. The authors also acknowledge the traditional custodians of the land on which this work was conducted, the Bidjigal people of the Eora nation, and the authors pay their respects to Elders past, present, and emerging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Poole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Richardson, J., Schroeter, L., Poole, K. (2024). Mechanically-Evoked TRPV4-Mediated Currents Are Modulated by Activated Integrin β1. In: Martinac, B., Cox, C.D., Poole, K., Baratchi, S., Kempe, D. (eds) Mechanobiology. ISMB 2022. Springer Series in Biophysics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-45379-3_1

Download citation

Publish with us

Policies and ethics