Skip to main content

Bi-objective Lexicographic Optimization in Markov Decision Processes with Related Objectives

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2023)

Abstract

We consider lexicographic bi-objective problems on Markov Decision Processes (MDPs), where we optimize one objective while guaranteeing optimality of another. We propose a two-stage technique for solving such problems when the objectives are related (in a way that we formalize). We instantiate our technique for two natural pairs of objectives: minimizing the (conditional) expected number of steps to a target while guaranteeing the optimal probability of reaching it; and maximizing the (conditional) expected average reward while guaranteeing an optimal probability of staying safe (w.r.t. some safe set of states). For the first combination of objectives, which covers the classical frozen lake environment from reinforcement learning, we also report on experiments performed using a prototype implementation of our algorithm and compare it with what can be obtained from state-of-the-art probabilistic model checkers solving optimal reachability.

G. A. Pérez—Supported by the iBOF “DESCARTES” and FWO “SAILor” projects. Debraj Chakraborty, Anirban Majumdar, Sayan Mukherjee and Jean-François Raskin were supported by the EOS project Verifying Learning Artificial Intelligent Systems (F.R.S.-FNRS and FWO). Debraj Chakraborty was also supported by MASH (MUNI/I/1757/2021) of Masaryk University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In particular, the strategy could be used as a component of some larger approach dealing with a more challenging problem too difficult for exact methods. In these cases, such as [8], one frequently relies on machine-learning techniques (e.g. Monte-Carlo methods or reinforcement learning) that run simulations for a fixed number of steps. Thus, a strategy that takes needlessly too many steps to reach a target will not help with learning practical and relevant strategies.

  2. 2.

    This allows one to express constraints on the number of steps needed to satisfy an Until operator.

References

  1. Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 424–439. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_37

    Chapter  Google Scholar 

  2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe reinforcement learning via shielding. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, (AAAI 2018), pp. 2669–2678. AAAI Press (2018)

    Google Scholar 

  3. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in Markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_43

    Chapter  Google Scholar 

  4. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Maximizing the conditional expected reward for reaching the goal. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 269–285. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_16

    Chapter  MATH  Google Scholar 

  5. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Math. Oper. Res. 16(3), 580–595 (1991). https://doi.org/10.1287/moor.16.3.580

    Article  MathSciNet  MATH  Google Scholar 

  6. Bohy, A., Bruyère, V., Filiot, E., Raskin, J.-F.: Synthesis from LTL specifications with mean-payoff objectives. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 169–184. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_12

    Chapter  Google Scholar 

  7. Busatto-Gaston, D., Chakraborty, D., Majumdar, A., Mukherjee, S., Pérez, G.A., Raskin, J.F.: Bi-objective lexicographic optimization in Markov decision processes with related objectives (2023). https://arxiv.org/abs/2305.09634

  8. Chakraborty, D., Busatto-Gaston, D., Raskin, J., Pérez, G.A.: Formally-sharp dagger for MCTS: lower-latency monte Carlo tree search using data aggregation with formal methods. In: Agmon, N., An, B., Ricci, A., Yeoh, W. (eds.) Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2023, London, United Kingdom, 29 May 2023–2 June 2023, pp. 1354–1362. ACM (2023). https://dl.acm.org/doi/10.5555/3545946.3598783

  9. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: QUASY: quantitative synthesis tool. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 267–271. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_24

    Chapter  Google Scholar 

  10. Chatterjee, K., Katoen, J.P., Mohr, S., Weininger, M., Winkler, T.: Stochastic games with lexicographic objectives. Form. Methods Syst. Des. (2023). https://doi.org/10.1007/s10703-023-00411-4

    Article  MATH  Google Scholar 

  11. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142_26

    Chapter  Google Scholar 

  12. Chatterjee, K., Novotný, P., Pérez, G.A., Raskin, J., Zikelic, D.: Optimizing expectation with guarantees in POMDPs. In: Singh, S., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San Francisco, California, USA, pp. 3725–3732. AAAI Press (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14354

  13. Chen, T., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: Synthesis for multi-objective stochastic games: an application to autonomous urban driving. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 322–337. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_28

    Chapter  Google Scholar 

  14. Denardo, E.V.: Computing a bias-optimal policy in a discrete-time Markov decision problem. Oper. Res. 18(2), 279–289 (1970). http://www.jstor.org/stable/168684

  15. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_11

    Chapter  MATH  Google Scholar 

  16. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Model-free reinforcement learning for lexicographic omega-regular objectives. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 142–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6_8

    Chapter  Google Scholar 

  17. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022). https://doi.org/10.1007/s10009-021-00633-z

    Article  Google Scholar 

  18. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 130–146. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_8

    Chapter  Google Scholar 

  19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  20. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.org/10.1002/9780470316887

  21. Skalse, J., Hammond, L., Griffin, C., Abate, A.: Lexicographic multi-objective reinforcement learning. In: Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 3430–3436. International Joint Conferences on Artificial Intelligence Organization (2022). https://doi.org/10.24963/ijcai.2022/476. Main Track

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debraj Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Busatto-Gaston, D., Chakraborty, D., Majumdar, A., Mukherjee, S., Pérez, G.A., Raskin, JF. (2023). Bi-objective Lexicographic Optimization in Markov Decision Processes with Related Objectives. In: André, É., Sun, J. (eds) Automated Technology for Verification and Analysis. ATVA 2023. Lecture Notes in Computer Science, vol 14215. Springer, Cham. https://doi.org/10.1007/978-3-031-45329-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45329-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45328-1

  • Online ISBN: 978-3-031-45329-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics