Skip to main content

Air Quality Monitoring Using Geospatial Technology and Field Sensors

  • Chapter
  • First Online:
Geospatial Analytics for Environmental Pollution Modeling

Abstract

Air quality management is a public health priority at the global scale. Accurate air quality monitoring along with understanding the sources of air pollution is the first step to adequate air quality management. Apart from sampler-assisted ground-based monitoring of air pollutants, the use of geospatial technologies and the deployment of field sensors have surfaced as a new hope for strengthening the air quality monitoring network. This review provides information on the types, characteristics, and robustness of field sensors and geospatial technologies that are used for air quality monitoring and management. The technology used in sensors and the methodology for geospatial technologies have been discussed. We conclude that the evolving network of field sensors and cutting-edge geospatial technologies will certainly lead to better air quality management in India. The efforts in this direction will not only provide a sustainable solution to the current crisis of air pollution but also lead to the collection of highly time-resolved data from even remote and least studied hard areas where ground-based sampling is a limitation. The airshed approach in this context offers a sustainable solution by targeting and synergising air pollution management across administrative boundaries. The synergy between ground-based stations, geospatial technologies, and field sensors will lead to a hub of data resources that will help policymakers frame policies for air quality management. Additionally, this will be an asset to researchers working in the field of atmospheric chemistry and pollutant dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbots, H. (2014). Air assessment for the Nantahala and Pisgah NFs (pp. 1–41). https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprd3795477.pdf

  • Agrawal, G., Mohan, D., & Rahman, H. (2021). Ambient air pollution in selected small cities in India: Observed trends and future challenges. IATSS Research, 45(1), 19–30. https://doi.org/10.1016/j.iatssr.2021.03.004

    Article  Google Scholar 

  • Aleixandre, M., & Gerboles, M. (2012). Review of small commercial sensors for indicative monitoring of ambient gas. Chemical Engineering Transactions, 30(x), 169–174. https://doi.org/10.3303/CET1230029

    Article  Google Scholar 

  • Arabia, S. (2019). Monitoring air pollution using satellite data, x, 772–780.

    Google Scholar 

  • Balakrishnan, K., Ganguli, B., Ghosh, S., Sambandam, S., Roy, S. S., & Chatterjee, A. (2013). A spatially disaggregated time-series analysis of the short-term effects of particulate matter exposure on mortality in Chennai, India. Air Quality, Atmosphere and Health, 6, 111–121. https://doi.org/10.1007/s11869-011-0151-6

    Article  CAS  Google Scholar 

  • Balakrishnan, K., Cohen, A., & Smith, K. R. (2014). Perspectives | Editorial addressing the burden of disease attributable to air pollution in India: The need to integrate across household. Environmental Health Perspectives, 1, 6–7. https://doi.org/10.1289/ehp.1002517.U.S

    Article  Google Scholar 

  • Beig, G., Chate, D. M., Sahu, S. K., Parkhi, N. S., Srinivas, R., Ali, K., Ghude, S., Yadav, S., & Trimbake, H. K. (2015). GAW Report No. 217 System of Air Quality Forecasting and Research (SAFAR—India) (Vol. 41, Issue 217).

    Google Scholar 

  • Brauer, M., Guttikunda, S. K., Nishad, K. A., Dey, S., Tripathi, S. N., Weagle, C., & Martin, R. V. (2019). Examination of monitoring approaches for ambient air pollution: A case study for India. Atmospheric Environment, 216(December 2018), 116940. https://doi.org/10.1016/j.atmosenv.2019.116940

    Article  CAS  Google Scholar 

  • Chauhan, A., Singh, R. P., Matsumi, Y., Hayashida, S., Nakayama, T., Gupta, S. K., & Shukla, D. P. (2022). Variability of the particulate matter concentration in the northern parts of India using low-cost sensors. In IGARSS 2022–2022 IEEE international geoscience and remote sensing symposium (pp. 6686–6689). IEEE.

    Chapter  Google Scholar 

  • CPCB. (2003). Guidelines for ambient air quality monitoring guidelines for ambient air quality monitoring.

    Google Scholar 

  • CPCB. (2011). Guidelines for the measurement of ambient air pollutants guidelines for real time sampling guidelines for real time sampling.

    Google Scholar 

  • CPCB. (2014). National air quality index.

    Google Scholar 

  • Dey, S., Di Girolamo, L., van Donkelaar, A., Tripathi, S. N., Gupta, T., & Mohan, M. (2012). Variability of outdoor fine particulate (PM2.5) concentration in the Indian Subcontinent: A remote sensing approach. Remote Sensing of Environment, 127, 153–161. https://doi.org/10.1016/j.rse.2012.08.021

    Article  Google Scholar 

  • Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R. A., Martonchik, J. V., Ackerman, T. P., Davies, R., Gerstl, S. A. W., Gordon, H. R., Muller, J., Myneni, R. B., Sellers, P. J., Pinty, B., & Verstraete, M. M. (1998). Multiangle Imaging Spectro Radiometer (MISR) instrument description and experiment overview. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1072–1087. https://doi.org/10.1109/36.700992

    Article  Google Scholar 

  • Feng, F., & Wang, K. (2019). Does the modern-era retrospective analysis for research and applications-2 aerosol reanalysis introduce an improvement in the simulation of surface solar radiation over China? International Journal of Climatology, 39(3), 1305–1318. https://doi.org/10.1002/joc.5881

    Article  Google Scholar 

  • Gaines Wilson, J., & Zawar-Reza, P. (2006). Intraurban-scale dispersion modelling of particulate matter concentrations: Applications for exposure estimates in cohort studies. Atmospheric Environment, 40(6), 1053–1063. https://doi.org/10.1016/j.atmosenv.2005.11.026

    Article  CAS  Google Scholar 

  • Ganguly, T., Selvaraj, K. L., & Guttikunda, S. K. (2020). National Clean Air Programme (NCAP) for Indian cities: Review and outlook of clean air action plans. Atmospheric Environment: X, 8, 100096. https://doi.org/10.1016/j.aeaoa.2020.100096

    Article  CAS  Google Scholar 

  • Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., et al. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

    Article  Google Scholar 

  • Gordon, T., Balakrishnan, K., Dey, S., Rajagopalan, S., Thornburg, J., Thurston, G., Agrawal, A., Collman, G., Guleria, R., & Limaye, S. (2018). Air pollution health research priorities for India: Perspectives of the Indo-U.S. Communities of Researchers. Environment International, 119(March), 100–108. https://doi.org/10.1016/j.envint.2018.06.013

    Article  Google Scholar 

  • Greene, D. S. (2005). Comparison between Tapered Element Microbalance (TEOM) and Federal Reference Method (FRM) for PM 2.5 measurement in East Tennessee. TRACE: Tennessee Research and Creative Exchange.

    Google Scholar 

  • Guttikunda, S. K., Nishadh, K. A., & Jawahar, P. (2019). Air pollution knowledge assessments (APnA) for 20 Indian cities. Urban Climate, 27(August 2018), 124–141. https://doi.org/10.1016/j.uclim.2018.11.005

    Article  Google Scholar 

  • Guttikunda, S., Ka, N., Ganguly, T., & Jawahar, P. (2023). Plugging the ambient air monitoring gaps in India’s national clean air programme (NCAP) airsheds. Atmospheric Environment, 301(March 2022), 119712. https://doi.org/10.1016/j.atmosenv.2023.119712

    Article  CAS  Google Scholar 

  • Hadjimitsis, D. G., Themistocleous, K., & Nisantzi, A. (2012). Air pollution monitoring using earth observation & GIS. In Air pollution—Monitoring, modelling and health. IntechOpen, May 2014. https://doi.org/10.5772/33939

  • Han, Y., van Paul, D., Quanhua, L., Fuzhong, W., Yan, B., Treadon, R., & John, D. (2006, August). NOAA technical report NESDIS 122 JCSDA Community Radiative Transfer Model (CRTM)—Version 1. NOAA Tech Report. http://docs.lib.noaa.gov/noaa_documents/NESDIS/TR_NESDIS/TR_NESDIS_122.pdf

  • Jia, Q. (2019). Urban air quality assessment method based on gis technology. Applied Ecology and Environmental Research, 17(4), 9367–9375. https://doi.org/10.15666/aeer/1704_93679375

    Article  Google Scholar 

  • Juginović, A., Vuković, M., Aranza, I., & BiloÅ¡, V. (2021). Health impacts of air pollution exposure from 1990 to 2019 in 43 European countries. Scientific Reports, 0123456789, 1–15. https://doi.org/10.1038/s41598-021-01802-5

    Article  CAS  Google Scholar 

  • Jung, Y. J., Lee, Y. K., Lee, D. G., Ryu, K. H., & Nittel, S. (2008). Air pollution monitoring system based on geosensor network. In IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium (pp. III-1370–III-1373). https://doi.org/10.1109/IGARSS.2008.4779615

  • Kahn, R. A., Gaitley, B. J., Garay, M. J., Diner, D. J., Eck, T. F., Smirnov, A., & Holben, B. N. (2010). Multiangle Imaging Spectro Radiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. Journal of Geophysical Research, 115(D23), D23209. https://doi.org/10.1029/2010JD014601

    Article  Google Scholar 

  • Kar, J., Deeter, M. N., Fishman, J., Liu, Z., Omar, A., Creilson, J. K., Trepte, C. R., Vaughan, M. A., & Winker, D. M. (2010). Wintertime pollution over the Eastern Indo-Gangetic Plains as observed from MOPITT, CALIPSO and tropospheric ozone residual data. Atmospheric Chemistry and Physics, 10(24), 12273–12283. https://doi.org/10.5194/acp-10-12273-2010

    Article  CAS  Google Scholar 

  • Kaur, K., & Kelly, K. E. (2022). Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah. Atmospheric Measurement Techniques, 16(December), 1–27.

    Google Scholar 

  • Kumar, A., Singh, I. P., & Sud, S. K. (2011). Energy efficient and low-cost indoor environment monitoring system based on the IEEE 1451 standard. IEEE Sensors Journal, 11(10), 2598–2610. https://doi.org/10.1109/JSEN.2011.2148171

    Article  CAS  Google Scholar 

  • Kumar, A., Kim, H., & Hancke, G. P. (2013). Environmental monitoring systems: A review. IEEE Sensors Journal, 13(4), 1329–1339. https://doi.org/10.1109/JSEN.2012.2233469

    Article  CAS  Google Scholar 

  • Kumar, V., Senarathna, S. D., Gurajala, S., Olsen, W., Sur, S., Mondal, S., & Dhaniyala, S. (2023). Understanding the source components captured by the Purple Air Network. ChemRxiv, 1–39. https://doi.org/10.26434/chemrxiv-2023-7wtxs

  • Kushwaha, M., Sumi, M., Arora, P., Dye, T., & Matte, T. (2022). Integrated use of low-cost sensors to strengthen air quality management in Indian cities.

    Google Scholar 

  • Li, Q. F., Wang-Li, L., Liu, Z., & Heber, A. J. (2012). Field evaluation of particulate matter measurements using tapered element oscillating microbalance in a layer house. Journal of the Air and Waste Management Association, 62(3), 322–335. https://doi.org/10.1080/10473289.2011.650316

    Article  CAS  Google Scholar 

  • Liu, Z., Liu, D., Huang, J., Vaughan, M., Uno, I., Sugimoto, N., Kittaka, C., Trepte, C., Wang, Z., Hostetler, C., & Winker, D. (2008). Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmospheric Chemistry and Physics, 8(16), 5045–5060. https://doi.org/10.5194/acp-8-5045-2008

    Article  CAS  Google Scholar 

  • Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N., Kara, L. B., & Presto, A. A. (2019). Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmospheric Measurement Techniques, 12(2), 903–920. https://doi.org/10.5194/amt-12-903-2019

    Article  Google Scholar 

  • Mishra, S. S., & Parasar, D. (2021). Application of Geospatial Artificial Intelligence in mapping of air pollutants in urban cities. Engineering and Technology Journal for Research and Innovation (ETJRI), III(Ii), 21–27.

    Google Scholar 

  • MOEF & CC. (2019). National clean air programme. Press Information Bureau, GoI, pp. 1–8. https://pib.gov.in/PressReleseDetail.aspx?PRID=1559384

  • Mohan, M., & Kandya, A. (2015). Impact of urbanisation and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Science of the Total Environment, 506–507, 453–465. https://doi.org/10.1016/j.scitotenv.2014.11.006

    Article  CAS  Google Scholar 

  • Nagendra, S. M. S., Yasa, P. R., Narayana, M. V., Khadirnaikar, S., & Rani, P. (2018). Mobile monitoring of air pollution using low cost sensors to visualise spatio-temporal variation of pollutants at urban hotspots. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2018.10.006

  • Nandakumar, V., Bishop, D., Alonas, E., LaBelle, J., Joshi, L., & Alford, T. L. (2011). A low-cost electrochemical biosensor for rapid bacterial detection. IEEE Sensors Journal, 11(1), 210–216. https://doi.org/10.1109/JSEN.2010.2055847

    Article  CAS  Google Scholar 

  • Pande, P., Dey, S., Chowdhury, S., Choudhary, P., Ghosh, S., Srivastava, P., & Sengupta, B. (2018). Seasonal transition in PM 10 exposure and associated all-cause mortality risks in India [Research-article]. Environmental Science & Technology, 52, 8756–8763. https://doi.org/10.1021/acs.est.8b00318

    Article  CAS  Google Scholar 

  • Pant, P., Lal, R. M., Guttikunda, S. K., Russell, A. G., Nagpure, A. S., Ramaswami, A., & Peltier, R. E. (2019). Monitoring particulate matter in India: Recent trends and future outlook. Air Quality, Atmosphere and Health, 12(1), 45–58. https://doi.org/10.1007/s11869-018-0629-6

    Article  CAS  Google Scholar 

  • Prakash, J., Choudhary, S., Raliya, R., Chadha, T., & Fang, J. (2022). PM sensors as an indicator of overall air quality: Pre-COVID and COVID periods. Atmospheric Pollution Research, 13(11), 101594. https://doi.org/10.1016/j.apr.2022.101594

    Article  CAS  Google Scholar 

  • Rai, A. C., Kumar, P., Pilla, F., Skouloudis, A. N., Di, S., Ratti, C., Yasar, A., & Rickerby, D. (2017). End-user perspective of low-cost sensors for outdoor air pollution monitoring. Science of the Total Environment, 607–608, 691–705. https://doi.org/10.1016/j.scitotenv.2017.06.266

    Article  CAS  Google Scholar 

  • Report, R. A. (2020). RIHN annual report. https://digitalcommons.macalester.edu/tapestries/vol10/iss1/2/

  • Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., et al. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24(14), 3624–3648. https://doi.org/10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Rohayu Haron Narashid, & Wan Mohd Naim Wan Mohd. (2010). Air quality monitoring using remote sensing and GIS technologies. In 2010 international conference on science and social research (CSSR 2010), Cssr (pp. 1186–1191). https://doi.org/10.1109/CSSR.2010.5773713

    Chapter  Google Scholar 

  • Sahu, R., Dixit, K. K., Mishra, S., Kumar, P., Shukla, A. K., Sutaria, R., Tiwari, S., & Tripathi, S. N. (2020). Validation of low-cost sensors in measuring PM10 concentrations at two sites in Delhi National Capital Region. Sensors, 20(January), 1347.

    Article  Google Scholar 

  • Sahu, R., Nagal, A., Dixit, K. K., Unnibhavi, H., Mantravadi, S., & Nair, S. (2021). Robust statistical calibration and characterisation of portable low-cost air quality monitoring sensors to quantify real-time O3 and NO2 concentrations in diverse environments. Atmospheric Measurement Techniques, 2, 37–52.

    Article  Google Scholar 

  • Shukla, K., & Aggarwal, S. G. (2022). A technical overview on beta-attenuation method for the monitoring of particulate matter in ambient air. Aerosol and Air Quality Research, 22(12), 220195. https://doi.org/10.4209/aaqr.220195

    Article  CAS  Google Scholar 

  • Singh, R. P. (2016). Asian atmospheric pollution sources, characteristics and impacts. Elsevier.

    Google Scholar 

  • Singh, D., Dahiya, M., Kumar, R., & Nanda, C. (2021). Sensors and systems for air quality assessment monitoring and management: A review. Journal of Environmental Management, 289(November 2020), 112510. https://doi.org/10.1016/j.jenvman.2021.112510

    Article  CAS  Google Scholar 

  • Singh, D., Dahiya, M., & Nanda, C. (2022). Geospatial view of air pollution and health risk over North Indian region in COVID-19 scenario. Journal of the Indian Society of Remote Sensing, 50(6), 1145–1162. https://doi.org/10.1007/s12524-022-01520-z

    Article  Google Scholar 

  • Snider, G., Weagle, C. L., Martin, R. V., Van Donkelaar, A., Conrad, K., Cunningham, D., & Gordon, C. (2015). SPARTAN: A global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health. Atmospheric Measurement Techniques, 8(June 2014), 505–521. https://doi.org/10.5194/amt-8-505-2015

    Article  CAS  Google Scholar 

  • Snider, G., Weagle, C. L., Murdymootoo, K. K., Ring, A., Ritchie, Y., Stone, E., Walsh, A., Akoshile, C., Anh, N. X., Balasubramanian, R., Brook, J., Qonitan, F. D., Dong, J., Griffith, D., He, K., Holben, B. N., Kahn, R., & Lagrosas, N. (2016). Variation in global chemical composition of PM 2.5: Emerging results from SPARTAN. Atmospheric Chemistry and Physics, 16(15), 9629–9653. https://doi.org/10.5194/acp-16-9629-2016

    Article  CAS  Google Scholar 

  • Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., Kilaru, V. J., & Preuss, P. W. (2013). The changing paradigm of air pollution monitoring. Environmental Science & Technology, 47(20), 11369–11377. https://doi.org/10.1021/es4022602

    Article  CAS  Google Scholar 

  • Taloor, A. K., Singh, A. K., Kumar, P., Kumar, A., Tripathi, J. N., Kumari, M., Kotlia, B. S., Kothyari, G. C., Tiwari, S. P., & Johnson, B. A. (2022). Geospatial technology-based analysis of air quality in India during the COVID-19 pandemic. Remote Sensing, 14(18), 4650. https://doi.org/10.3390/rs14184650

    Article  Google Scholar 

  • Tripathi, S., Jain, V., Mukherjee, A., Banerjee, S., & Rai, P. (2023). Predicting PM 2.5 based on microsatellite imagery and low-cost sensor network using CNN-RT-RF Joint Model.

    Google Scholar 

  • Venkataraman, C., Brauer, M., Tibrewal, K., Sadavarte, P., Ma, Q., & Cohen, A. (2018). Source influence on emission pathways and ambient PM 2.5 pollution over India (2015–2050). Atmospheric Chemistry and Physics, 18(11), 8017–8039.

    Article  CAS  Google Scholar 

  • World Health. (2006). Air quality guidelines. Air Quality Guidelines, 91, 1–496.

    Google Scholar 

  • Yi, W., Lo, K., Mak, T., Leung, K., Leung, Y., & Meng, M. (2015). A survey of wireless sensor network based air pollution monitoring systems. Sensors, 15(12), 31392–31427. https://doi.org/10.3390/s151229859

    Article  Google Scholar 

  • Zawar-Reza, P., & Sturman, A. (2008). Application of airshed modelling to the implementation of the New Zealand National Environmental Standards for air quality. Atmospheric Environment, 42(38), 8785–8794. https://doi.org/10.1016/j.atmosenv.2008.07.045

    Article  CAS  Google Scholar 

  • Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., & Carlson, D. E. (2018). Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmospheric Measurement Techniques, 11, 4823–4846.

    Article  CAS  Google Scholar 

  • Zheng, T., Bergin, M. H., Sutaria, R., Tripathi, S. N., & Caldow, R. (2019). Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi. Atmospheric Measurement Techniques, 12(9), 5161–5181.

    Article  Google Scholar 

Download references

Acknowledgements

KS acknowledges the University Grants Commission (UGC), India, for financial assistance in the form of Junior Research Fellowship (JRF).

Conflict of Interest

The authors confirm that there are no apparent financial conflicts of interest or personal affiliations that may have potentially impacted the work presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, K., Yadav, S. (2023). Air Quality Monitoring Using Geospatial Technology and Field Sensors. In: Mushtaq, F., Farooq, M., Mukherjee, A.B., Ghosh Nee Lala, M. (eds) Geospatial Analytics for Environmental Pollution Modeling. Springer, Cham. https://doi.org/10.1007/978-3-031-45300-7_4

Download citation

Publish with us

Policies and ethics