Skip to main content

Introducing Divergence for Infinite Probabilistic Models

  • Conference paper
  • First Online:
Reachability Problems (RP 2023)

Abstract

Computing the reachability probability in infinite state probabilistic models has been the topic of numerous works. Here we introduce a new property called divergence that when satisfied allows to compute reachability probabilities up to an arbitrary precision. One of the main interest of divergence is that our algorithm does not require the reachability problem to be decidable. Then we study the decidability of divergence for probabilistic versions of pushdown automata and Petri nets where the weights associated with transitions may also depend on the current state. This should be contrasted with most of the existing works that assume weights independent of the state. Such an extended framework is motivated by the modeling of real case studies. Moreover, we exhibit some divergent subclasses of channel systems and pushdown automata, particularly suited for specifying open distributed systems and networks prone to performance collapsing in order to compute the probabilities related to service requirements.

This work has been supported by ANR project BRAVAS (ANR-17-CE40-0028) with Alain Finkel and ANR project MAVeriQ (ANR-20-CE25-0012) with Serge Haddad.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Surprisingly, in 1972, to the best of our knowledge, Santos gave the first definition of probabilistic pushdown automata [18] that did not open up a new field of research at the time.

References

  1. Abdulla, P.A., Bertrand, N., Rabinovich, A.M., Schnoebelen, P.: Verification of probabilistic systems with faulty communication. Inf. Comput. 202(2), 141–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulla, P.A., Henda, N.B., Mayr, R.: Decisive Markov chains. Log. Methods Comput. Sci. 3(4) (2007)

    Google Scholar 

  3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Heidelberg (2008)

    MATH  Google Scholar 

  4. Brázdil, T., Chatterjee, K., Kucera, A., Novotný, P., Velan, D., Zuleger, F.: Efficient algorithms for asymptotic bounds on termination time in VASS. In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, pp. 185–194. ACM (2018)

    Google Scholar 

  5. Brázdil, T., Esparza, J., Kiefer, S., Kucera, A.: Analyzing probabilistic pushdown automata. Formal Methods Syst. Des. 43(2), 124–163 (2013)

    Article  MATH  Google Scholar 

  6. Brázdil, T., Esparza, J., Kucera, A.: Analysis and prediction of the long-run behavior of probabilistic sequential programs with recursion (extended abstract). In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 521–530. IEEE Computer Society (2005)

    Google Scholar 

  7. Brázdil, T., Kiefer, S., Kučera, A.: Efficient analysis of probabilistic programs with an unbounded counter. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 208–224. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_18

    Chapter  Google Scholar 

  8. Brázdil, T., Kiefer, S., Kucera, A.: Efficient analysis of probabilistic programs with an unbounded counter. J. ACM 61(6), 41:1–41:35 (2014)

    Google Scholar 

  9. Brázdil, T., Kiefer, S., Kucera, A., Novotný, P., Katoen, J.: Zero-reachability in probabilistic multi-counter automata. In: Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS 2014, pp. 22:1–22:10. ACM (2014)

    Google Scholar 

  10. Esparza, J., Kucera, A., Mayr, R.: Model checking probabilistic pushdown automata. In: Proceedings of 19th IEEE Symposium on Logic in Computer Science (LICS), pp. 12–21. IEEE Computer Society (2004)

    Google Scholar 

  11. Esparza, J., Kucera, A., Mayr, R.: Quantitative analysis of probabilistic pushdown automata: expectations and variances. In: Proceedings of the 20th IEEE Symposium on Logic in Computer Science (LICS), pp. 117–126. IEEE Computer Society (2005)

    Google Scholar 

  12. Esparza, J., Kucera, A., Mayr, R.: Model checking probabilistic pushdown automata. Logical Methods Comput. Sci. 2(1) (2006)

    Google Scholar 

  13. Finkel, A., Haddad, S., Ye, L.: About decisiveness of dynamic probabilistic models. CoRR abs/2305.19564 (2023). https://doi.org/10.48550/arXiv.2305.19564, to appear in CONCUR’23

  14. Finkel, A., Haddad, S., Ye, L.: Introducing divergence for infinite probabilistic models. CoRR abs/2308.08842 (2023). https://doi.org/10.48550/arXiv.2308.08842

  15. Iyer, P., Narasimha, M.: Probabilistic lossy channel systems. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997. LNCS, vol. 1214, pp. 667–681. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0030633

    Chapter  Google Scholar 

  16. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer, Heidelberg (1976). https://doi.org/10.1007/978-1-4684-9455-6

    Book  MATH  Google Scholar 

  17. Kucera, A., Esparza, J., Mayr, R.: Model checking probabilistic pushdown automata. Log. Methods Comput. Sci. 2(1) (2006). https://doi.org/10.2168/LMCS-2(1:2)2006

  18. Santos, E.S.: Probabilistic grammars and automata. Inf. Control. 21(1), 27–47 (1972). https://doi.org/10.1016/S0019-9958(72)90026-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of the 26th Annual Symposium on Foundations of Computer Science, pp. 327–338. IEEE Computer Society (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Finkel, A., Haddad, S., Ye, L. (2023). Introducing Divergence for Infinite Probabilistic Models. In: Bournez, O., Formenti, E., Potapov, I. (eds) Reachability Problems. RP 2023. Lecture Notes in Computer Science, vol 14235. Springer, Cham. https://doi.org/10.1007/978-3-031-45286-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45286-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45285-7

  • Online ISBN: 978-3-031-45286-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics