Skip to main content

A PCA-Based Keypoint Tracking Approach to Automated Facial Expressions Encoding

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2023)

Abstract

The Facial Action Coding System (FACS) for studying facial expressions is manual and requires significant effort and expertise. This paper explores using automated techniques to generate Action Units (AUs) for studying facial expressions. We propose an unsupervised approach based on Principal Component Analysis (PCA) and facial keypoint tracking to generate data-driven AUs called PCA AUs using the publicly available DISFA dataset. The PCA AUs comply with the direction of facial muscle movements and can explain over 92.83% of the variance in other public test datasets (BP4D-Spontaneous and CK+), indicating their capability to generalize facial expressions. The PCA AUs are also comparable to a keypoint-based equivalence of FACS AUs in terms of variance explained on the test datasets. Besides, PCA AUs can code at 30 fps on AMD EPYC 7402 24-Core Processor. In conclusion, our research demonstrates the potential of an automated coding system as an alternative to manual FACS, which could lead to efficient real-time analysis of facial expressions in psychology and related fields. To promote further research, we have made the code publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code can be found here: https://github.com/Shivansh-ct/PCA-AUs.

  2. 2.

    Modification of image https://github.com/Fang-Haoshu/Halpe-FullBody/blob/master/docs/face.jpg.

References

  1. Zhi, R., Liu, M., Zhang, D.: A comprehensive survey on automatic facial action unit analysis. Vis. Comput. 36, 1067–1093 (2020)

    Article  Google Scholar 

  2. Ekman, P., Friesen, W., Hager, J.: Facial action coding system. A Human Face, Salt Lake City, UT (2002)

    Google Scholar 

  3. Waller, B., Julle-Daniere, E., Micheletta, J.: Measuring the evolution of facial ‘expression’ using multi-species FACS. Neurosci. Biobehav. Rev. 113, 1–11 (2020)

    Article  Google Scholar 

  4. Bartlett, M., Hager, J., Ekman, P., Sejnowski, T.: Measuring facial expressions by computer image analysis. Psychophysiology 36, 253–263 (1999)

    Article  Google Scholar 

  5. Bartlett, M., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., Movellan, J., et al.: Automatic recognition of facial actions in spontaneous expressions. J. Multimed. 1, 22–35 (2006)

    Google Scholar 

  6. Mavadati, S., Mahoor, M., Bartlett, K., Trinh, P.: Automatic detection of non-posed facial action units. In: 2012 19th IEEE International Conference On Image Processing, pp. 1817–1820 (2012)

    Google Scholar 

  7. Shao, Z., Liu, Z., Cai, J., Ma, L.: Deep adaptive attention for joint facial action unit detection and face alignment. In: ECCV 2018. LNCS, vol. 11217, pp. 725–740. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_43

  8. Torre, F., Cohn, J.: Facial expression analysis. Visual Analysis Of Humans: Looking At People, pp. 377–409 (2011)

    Google Scholar 

  9. Sariyanidi, E., Gunes, H., Cavallaro, A.: Automatic analysis of facial affect: a survey of registration, representation, and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1113–1133 (2014)

    Article  Google Scholar 

  10. Dong, X., Yang, Y., Wei, S., Weng, X., Sheikh, Y., Yu, S.: Supervision by registration and triangulation for landmark detection. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3681–3694 (2020)

    Article  Google Scholar 

  11. Mavadati, S., Mahoor, M., Bartlett, K., Trinh, P., Cohn, J.: DISFA: a spontaneous facial action intensity database. IEEE Trans. Affect. Comput. 4, 151–160 (2013)

    Article  Google Scholar 

  12. Zhang, X., et al.: A high-resolution spontaneous 3D dynamic facial expression database. In: 2013 10th IEEE International Conference And Workshops On Automatic Face And Gesture Recognition (FG), pp. 1–6 (2013)

    Google Scholar 

  13. Zhang, X., et al.: Bp4d-spontaneous: a high-resolution spontaneous 3d dynamic facial expression database. Image Vis. Comput. 32, 692–706 (2014)

    Article  Google Scholar 

  14. Kanade, T., Cohn, J., Tian, Y.: Comprehensive database for facial expression analysis. In: Proceedings Fourth IEEE International Conference On Automatic Face And Gesture Recognition (cat. No. PR00580), pp. 46–53 (2000)

    Google Scholar 

  15. Lucey, P., Cohn, J., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference On Computer Vision And Pattern Recognition-Workshops, pp. 94–101 (2010)

    Google Scholar 

  16. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23, 681–685 (2001)

    Article  Google Scholar 

  17. Saragih, J., Lucey, S., Cohn, J.: Deformable model fitting by regularized landmark mean-shift. Int. J. Comput. Vis. 91, 200–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vonikakis, V., Winkler, S.: Identity-invariant facial landmark frontalization for facial expression analysis. In: 2020 IEEE International Conference On Image Processing (ICIP), pp. 2281–2285 (2020)

    Google Scholar 

  19. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  20. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fienup, J.: Invariant error metrics for image reconstruction. Appl. Opt. 36, 8352–8357 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivansh Chandra Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandra Tripathi, S., Garg, R. (2023). A PCA-Based Keypoint Tracking Approach to Automated Facial Expressions Encoding. In: Maji, P., Huang, T., Pal, N.R., Chaudhury, S., De, R.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2023. Lecture Notes in Computer Science, vol 14301. Springer, Cham. https://doi.org/10.1007/978-3-031-45170-6_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45170-6_85

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45169-0

  • Online ISBN: 978-3-031-45170-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics