Skip to main content

A Contrastive Learning Approach forĀ Infrared-Visible Image Fusion

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2023)

Abstract

Image processing and computer vision research have embraced deep learning. This paper offers a deep learning infrared-visible image fusion network using a contrastive learning framework and multi-scale structural similarity (MSSSIM). A novel contrastive learning loss combined with MSSSIM loss is introduced. The MSSSIM loss optimizes the mutual information between source and fused images from various viewpoints and resolutions, whereas contrastive loss reduces the artificially generated noise in the feature. The fusion network has an auto-encoder. The encoder extracts features from the infrared and visible images, and the decoder regenerates the fused image. Based on the similarity between the source and fused images, the loss function directs the network to extract silent targets and background textures from infrared and visible images, respectively. The proposed method outperforms the state-of-the-art in both qualitative and quantitative evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma, J., Ma, Y., Li, C.: Infrared and visible image fusion methods and applications: a survey. Inf. Fusion 45, 153ā€“178 (2019)

    ArticleĀ  Google ScholarĀ 

  2. Bavirisetti, D.P., Dhuli, R.: Two-scale image fusion of visible and infrared images using saliency detection. Infrared Phys. Technol. 76, 52ā€“64 (2016)

    ArticleĀ  Google ScholarĀ 

  3. Wang, X., Yin, J., Zhang, K., Li, S., Yan, J.: Infrared weak-small targets fusion based on latent low-rank representation and DWT. IEEE Access 7, 112 681ā€“112 692 (2019)

    Google ScholarĀ 

  4. Yang, Y., et al.: Infrared and visible image fusion based on infrared background suppression. Opt. Lasers Eng. 164, 107528 (2023)

    Google ScholarĀ 

  5. Li, H., Wu, X.-J.: DenseFuse: a fusion approach to infrared and visible images. IEEE Trans. Image Process. 28(5), 2614ā€“2623 (2018)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  6. Zhu, Z., Yang, X., Lu, R., Shen, T., Xie, X., Zhang, T.: CLF-Net: contrastive learning for infrared and visible image fusion network. IEEE Trans. Instrum. Meas. 71, 1ā€“15 (2022)

    Google ScholarĀ 

  7. Ram Prabhakar, K., Sai Srikar, V., Venkatesh Babu, R.: DeepFuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4714ā€“4722 (2017)

    Google ScholarĀ 

  8. Hou, R., et al.: VIF-Net: an unsupervised framework for infrared and visible image fusion. IEEE Trans. Comput. Imaging 6, 640ā€“651 (2020)

    ArticleĀ  Google ScholarĀ 

  9. Xu, H., Zhang, H., Ma, J.: Classification saliency-based rule for visible and infrared image fusion. IEEE Trans. Comput. Imaging 7, 824ā€“836 (2021)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  10. Kang, M., Park, J.: ContraGAN: contrastive learning for conditional image generation. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21 357ā€“21 369 (2020)

    Google ScholarĀ 

  11. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part IX. LNCS, vol. 12354, pp. 319ā€“345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    ChapterĀ  Google ScholarĀ 

  12. Huang, D.-S., Jo, K.-H., Figueroa-GarcĆ­a, J.C.: Intelligent Computing Theories and Application: 13th International Conference, ICIC 2017, Liverpool, UK, August 7ā€“10, 2017, Proceedings, Part II, vol. 10362. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63309-1

  13. Spiegl, B.: Contrastive unpaired translation using focal loss for patch classification. arXiv preprint arXiv:2109.12431 (2021)

  14. Andonian, A., Park, T., Russell, B., Isola, P., Zhu, J.-Y., Zhang, R.: Contrastive feature loss for image prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1934ā€“1943 (2021)

    Google ScholarĀ 

  15. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600ā€“612 (2004)

    ArticleĀ  Google ScholarĀ 

  16. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3(1), 47ā€“57 (2016)

    ArticleĀ  Google ScholarĀ 

  17. Toet, A., et al.: TNO image fusion dataset. Figshare. Data (2014)

    Google ScholarĀ 

  18. Ma, J., Yu, W., Liang, P., Li, C., Jiang, J.: FusionGAN: a generative adversarial network for infrared and visible image fusion. Inf. Fusion 48, 11ā€“26 (2019)

    ArticleĀ  Google ScholarĀ 

  19. Li, H., Wu, X.-J., Kittler, J.: Infrared and visible image fusion using a deep learning framework. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 2705ā€“2710. IEEE (2018)

    Google ScholarĀ 

  20. Guo, H., Ma, Y., Mei, X., Ma, J.: Infrared and visible image fusion based on total variation and augmented Lagrangian. JOSA A 34(11), 1961ā€“1968 (2017)

    ArticleĀ  Google ScholarĀ 

  21. Liu, Y., Chen, X., Ward, R.K., Wang, Z.J.: Image fusion with convolutional sparse representation. IEEE Signal Process. Lett. 23(12), 1882ā€“1886 (2016)

    ArticleĀ  Google ScholarĀ 

  22. Zhao, Z., Xu, S., Zhang, C., Liu, J., Li, P., Zhang, J.: DIDFuse: deep image decomposition for infrared and visible image fusion. arXiv preprint arXiv:2003.09210 (2020)

  23. Bavirisetti, D.P., Dhuli, R.: Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform. IEEE Sens. J. 16(1), 203ā€“209 (2015)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, A.K., Barnwal, M., Mishra, D. (2023). A Contrastive Learning Approach forĀ Infrared-Visible Image Fusion. In: Maji, P., Huang, T., Pal, N.R., Chaudhury, S., De, R.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2023. Lecture Notes in Computer Science, vol 14301. Springer, Cham. https://doi.org/10.1007/978-3-031-45170-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45170-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45169-0

  • Online ISBN: 978-3-031-45170-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics