Skip to main content

Weakly Supervised Medical Image Segmentation Through Dense Combinations of Dense Pseudo-Labels

  • Conference paper
  • First Online:
Data Engineering in Medical Imaging (DEMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14314))

Included in the following conference series:

Abstract

Annotating a large amount of medical imaging data thoroughly for training purposes can be expensive, particularly for medical image segmentation tasks. Instead, obtaining less precise scribble–like annotations is more feasible for clinicians. In this context, training semantic segmentation networks with limited-signal supervision remains a technical challenge. We present an innovative scribble-supervised approach to image segmentation via densely combining dense pseudo-labels which consists of groups of CNN– and ViT–based segmentation networks. A simple yet efficient dense collaboration scheme called Collaborative Hybrid Networks (CHNets) ensembles dense pseudo–labels to expand the dataset such that it mimics full-signal supervision. Additionally, internal consistency and external consistency training of the collaborating networks are proposed, so as to ensure that each network is beneficial to the others. This results in a significant overall improvement. Our experiments on a public MRI benchmark dataset demonstrate that our proposed approach outperforms other weakly-supervised methods on various metrics. The source code of CHNets, ten baseline methods, and dataset are available at https://github.com/ziyangwang007/CV-WSL-MIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, W., et al.: Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  2. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE TMI (2018)

    Google Scholar 

  3. Cao, H., et al.: Swin-unet: unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  4. Chen, L.C., et al.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE TPAMI (2017)

    Google Scholar 

  5. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)

    Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2006)

    Google Scholar 

  8. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. NIPS (2004)

    Google Scholar 

  9. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. NIPS (2018)

    Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2017)

    Google Scholar 

  11. Kim, B., Ye, J.C.: Mumford-shah loss functional for image segmentation with deep learning. IEEE TIP (2019)

    Google Scholar 

  12. Lee, H., Jeong, W.-K.: Scribble2Label: scribble-supervised cell segmentation via self-generating pseudo-labels with consistency. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_2

    Chapter  Google Scholar 

  13. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3159–3167 (2016)

    Google Scholar 

  14. Liu, X., et al.: Weakly supervised segmentation of COVID19 infection with scribble annotation on CT images. Pattern Recognit. (2022)

    Google Scholar 

  15. Liu, Z., et al.: Swin transformer v2: scaling up capacity and resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12009–12019 (2022)

    Google Scholar 

  16. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  17. Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between CNN and transformer. In: International Conference on Medical Imaging with Deep Learning, pp. 820–833. PMLR (2022)

    Google Scholar 

  18. Luo, X., et al.: Scribble-supervised medical image segmentation via dual-branch network and dynamically mixed pseudo labels supervision. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13431, pp. 528–538. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_50

  19. Reiß, S., Seibold, C., Freytag, A., Rodner, E., Stiefelhagen, R.: Every annotation counts: multi-label deep supervision for medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9532–9542 (2021)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Tang, M., Perazzi, F., Djelouah, A., Ayed, I.B., Schroers, C., Boykov, Y.: On regularized losses for weakly-supervised CNN segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 524–540. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_31

    Chapter  Google Scholar 

  22. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  23. Valvano, G., et al.: Learning to segment from scribbles using multi-scale adversarial attention gates. IEEE TMI (2021)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. NIPS (2017)

    Google Scholar 

  25. Wang, Z., et al.: Uncertainty-aware transformer for MRI cardiac segmentation via mean teachers. MIUA (2022)

    Google Scholar 

  26. Wang, Z., Dong, N., Voiculescu, I.: Computationally-efficient vision transformer for medical image semantic segmentation via dual pseudo-label supervision. In: ICIP. IEEE (2022)

    Google Scholar 

  27. Wang, Z., Voiculescu, I.: Triple-view feature learning for medical image segmentation. In: Xu, X., Li, X., Mahapatra, D., Cheng, L., Petitjean, C., Fu, H. (eds.) Resource-Efficient Medical Image Analysis. REMIA 2022. LNCS, vol. 13543, pp. 42–54. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16876-5_5

  28. Wang, Z., Voiculescu, I.: Dealing with unreliable annotations: a noise-robust network for semantic segmentation through a transformer-improved encoder and convolution decoder. Appl. Sci. (2023)

    Google Scholar 

  29. Wang, Z., Zhang, Z., Voiculescu, I.: RAR-U-Net: a residual encoder to attention decoder by residual connections framework for spine segmentation under noisy labels. In: ICIP. IEEE (2021)

    Google Scholar 

  30. Zhang, H., et al.: Mixup: beyond empirical risk minimization. ICLR (2017)

    Google Scholar 

  31. Zhang, K., Zhuang, X.: Cyclemix: a holistic strategy for medical image segmentation from scribble supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11656–11665 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Voiculescu, I. (2023). Weakly Supervised Medical Image Segmentation Through Dense Combinations of Dense Pseudo-Labels. In: Bhattarai, B., et al. Data Engineering in Medical Imaging. DEMI 2023. Lecture Notes in Computer Science, vol 14314. Springer, Cham. https://doi.org/10.1007/978-3-031-44992-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44992-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44991-8

  • Online ISBN: 978-3-031-44992-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics