Skip to main content

Recovering the Elastic Compressibility Coefficient of Fluid-Saturated Porous Media in the Isothermal Regime

  • Conference paper
  • First Online:
Computational and Experimental Simulations in Engineering (ICCES 2023)

Abstract

The paper presents an algorithm and results of calculating the compressibility coefficient of fluid-saturated porous media based on data of the direct mathematical simulation of the deformation process in the elastic isothermal regime. We consider the direct mathematical simulation procedure as an implementation of an iterative algorithm for solving a multiphysics problem in which the closure of the computational fluid dynamics and mechanics blocks is performed using interface conjugation conditions with respect to the Cauchy stress tensor. Computational schemes of non-conforming finite-element methods have been applied to discretize the mathematical models. The dependence of the compressibility coefficient in the porous medium on the applied external mechanical pressure and fluid saturation of the pore space is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diwu, P., Liu, R., Liu, T., Jia, B.: Productivity evaluation study of shale gas reservoirs. Adv. Mater. Res. 1073 (2015)

    Google Scholar 

  2. Jongerius, M.: Reservoir compaction in shallow gas reservoirs. In partial fulfillment of the requirements for the degree of Master of Science in Petroleum Engineering and Geoscience, Delft University of Technology (2016)

    Google Scholar 

  3. He, J., Ling, K., Pei, P., Ni, X.: Calculation of rock compressibility by using the. characteristics of downstream pressure change in permeability experiment. J. Petrol. Sci. Eng. 143, 121–127 (2016)

    Article  Google Scholar 

  4. Zimmerman, R.: Coupling in poroelasticity and thermoelasticity. Int. J. Rock Mech. Min. Sci. 37(1–2), 79–87 (2000)

    Article  Google Scholar 

  5. Silva, G., Franco, D., Stael, G., Costa, M., Martins, R., Maraes, O., Azeredo, R.: Petrophysical studies of north American carbonate rock samples and evaluation of pore-volume compressibility models. J. Appl. Geophys. 123, 256–266 (2015)

    Article  Google Scholar 

  6. Liu, Z., Shao, J., Xu, W., Shi, C.: Estimation of elasticity of porous rock based on mineral composition and microstructure. Adv. Mater. Sci. Eng. 512727 (2013)

    Google Scholar 

  7. Zhu, S., Du, Z., Li, C., You, Z., Peng, X., Deng, P.: An analytical model for pore volume compressibility of reservoir rock. Fuel 232, 543–549 (2018)

    Article  Google Scholar 

  8. Lei, G., Cao, N., McPherson, B., Liao, Q., Chen, W.: A novel analytical model for pore volume compressibility of fractal porous media. Sci. Rep. 9, 14472 (2019)

    Google Scholar 

  9. Mavko, G., Mukerji, T., Dvorkin, J.: The Rock Physics Handbook, 2nd edn. Cambridge University Press, Tools for Seismic Analysis of Porous Media (2009)

    Book  Google Scholar 

  10. Ashena, R., Behrenbruch, P., Ghalambor, A.: Log-based rock compressibility estimation for Asmari carbonate formation. J. Pet. Explor. Prod. Technol. 10, 2771–2783 (2020)

    Article  Google Scholar 

  11. Wang, R., Zeng, F., Li, L.: Applicability of constitutive models to describing the compressibility of mining backfill: a comparative study. Processes 9(12), 2139 (2021)

    Article  Google Scholar 

  12. Solovyev, S., Novikov, M., Kopylova, A., Lisitsa, V.: Numerical solution of Biot equations in quasi-static state. In: 21st International Conference on Computational Science and Its Applications, ICCSA 2021. Lecture Notes in Computer Science, Cagliari, Italy (2021)

    Google Scholar 

  13. Zhao, Y., Zhang, K., Wang, C., Bi, J.: A large pressure pulse decay method to simultaneously measure permeability and compressibility of tight rocks. J. Nat. Gas Sci. Eng. 98, 104395 (2022)

    Article  Google Scholar 

  14. Golodniuc, P.: Analytical and numerical modelling of elastic properties of isotropic and anisotropic rocks and their stress dependencies. Ph.D. thesis, Curtin University (2015). https://espace.curtin.edu.au/bitstream/handle/20.500.11937/1045/238879_Golodoniuc%202016.pdf?sequence=2&isAllowed=y. Last accessed 2023/02/26

  15. Saxena, N., Hofmann, R., Hows, A., Saenger, E., Duranti, L., Stefani, J., Wiegmann, A., Kerimov, A., Kabel, M.: Rock compressibility from microcomputed tomography images: controls on digital rock simulations. Geophysicists 84(4), 1JA-Z21 (2019)

    Google Scholar 

  16. Zhang, P., Yin, Z.-Y., Jin, Y.-F., Chan, T., Gao, F.: Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms. Geosci. Front. 12(1), 441–452 (2021)

    Article  Google Scholar 

  17. Epov, M., Shurina, E., Itkina, N., Kutischeva, A., Markov, S.: Finite element modeling of a multi-physics poro-elastic problem in multiscale media. J. Comput. Appl. Math. 352, 1–22 (2019)

    Article  MathSciNet  Google Scholar 

  18. Shurina, E., Itkina, N., Kutishcheva, A., Markov, S.: Mathematical simulation of coupled elastic deformation and fluid dynamics in heterogeneous media. Commun. Comput. Inf. Sci. 1526, 131–147 (2022)

    Google Scholar 

Download references

Acknowledgements

1. This work has been supported by the grants the Russian Science Foundation, RSF 22-71-10037 (calculating the elastic compressibility of a porous medium). 2. The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation, Project No. FWZZ-2022-0030 (mathematical simulation of the fluid flow).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Markov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Markov, S.I., Kutishcheva, A.Y., Itkina, N.B. (2024). Recovering the Elastic Compressibility Coefficient of Fluid-Saturated Porous Media in the Isothermal Regime. In: Li, S. (eds) Computational and Experimental Simulations in Engineering. ICCES 2023. Mechanisms and Machine Science, vol 146. Springer, Cham. https://doi.org/10.1007/978-3-031-44947-5_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44947-5_80

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44946-8

  • Online ISBN: 978-3-031-44947-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics