Skip to main content

Air-Gap Sensors for Hydro Generators and Techniques for Air-Gap Eccentricity Fault Detection and Estimation

  • Chapter
  • First Online:
Power Systems Research and Operation

Abstract

Important aspect of ensuring the reliability of the operation of hydroelectric units of power plants is the issue of assessing their actual technical condition and ensuring its constant control. During operation, a number of physicochemical, thermal and mechanical processes occur in the structural elements of powerful generators, which over time lead to the onset of the development of defects in rotating and non-rotating structural elements of the machine. One of the main parameters of hydrogenerators, the control of which makes it possible to improve the probability of determining, by standard vibration diagnostic systems, a defect in the early stages of its inception, is the air gap between the rotor and the stator. Therefore, the value of the uniformity of the air gap largely determines the characteristics of the machine and its behavior during operation. To control the size of the air gap between the rotor and the stator, a magnetic field-resistant capacitive air gap sensor was proposed, the use of which made it possible to reduce the influence of the curvature of the rotor pole on the result of monitoring the unevenness of the air gap. Analytical and graphical dependences for the conversion function of the sensor intended for use on a capsule hydro generator of the SGK538/160-70M and other type have been determined. A sensor or a system of sensors can used as a separate device or as a component of parts of monitoring and diagnostic systems. The use of the proposed sensor or group of sensors in the control and diagnostic systems of hydroelectric units of power plants will ensure uninterrupted operation of the electrical equipment of the IPS of Ukraine. This is important in the conditions of war and the conduct of military operations, when it is necessary to provide the necessary balance between the production and consumption of electricity in a short time in the conditions of large-scale destruction of the energy infrastructure of Ukraine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseev, B.A.: Determining the state (diagnostics) of large hydrogenerators: monograph. Moscow 144 (2002) (Rus)

    Google Scholar 

  2. Levitskyi, A.S., Zaitsev, I.O., Panchik, M.V.: Method for monitoring the stator core of a powerful turbo generator. ENERGETIKA. Proceedings of CIS Higher Education Institutions and Power Engineering Associations 64(4), 303–313 (2021). https://doi.org/10.21122/1029-7448-2021-64-4-303-313 (Rus)

  3. Levitskyi, A.S., Zaitsev, Ie.O., Panchik, M.V.: Automated device for monitoring the stator core of powerful turbogenerator. Tekhnichna Elektrodynamika. 5, 83–87 (2021). (Ukr). https://doi.org/10.15407/techned2021.05.083

  4. Overview of typical factors affecting the air gap of a hydrogenerator https://library.vibrosystm.com/en/Application_Notes/AN006-a.pdf

  5. Xu, B., Chen, D., Zhang, H., Li, C., Zhou, J.: Shaft misalignment induced vibration of a hydraulic turbine generating system considering parametric uncertainties. J. Sound Vib. 435, 74–90 (2018). https://doi.org/10.1016/j.jsv.2018.08.008

    Article  Google Scholar 

  6. Wu, Q., Zhang, L., Ma, Z.: A model establishment and numerical simulation of dynamic coupled hydraulic–mechanical–electric–structural system for hydropower station. Nonlinear Dyn. 87(1), 459–474 (2017). https://doi.org/10.1007/s11071-016-3053-1

    Article  Google Scholar 

  7. Zhanga, J., Zhanga, L., Ma, Z., Wanga, X., Wuc, Q., Fand, Z.: Coupled bending-torsional vibration analysis for rotor-bearing system with rub-impact of hydraulic generating set under both dynamic and static eccentric electromagnetic excitation. Chaos Solitons Fractals 147, 1–13 (2021). https://doi.org/10.1016/j.chaos.2021.110960

    Article  MathSciNet  Google Scholar 

  8. Ismagilov, F.R., Khairullin, I. Kh., Vavilov, V.E.: Influence of air gap non-uniformity on the EMF of a synchronous alternator. Electrotech. Inf. Complexes Syst. 9(4), 54–60 (2013)

    Google Scholar 

  9. Geller, B., Gamata, V.: Higher harmonics in asynchronous machines. Moscow 351 (1981) (Rus)

    Google Scholar 

  10. Roda-Casanova, V., Sanchez-Marin, F.: Contribution of the deflection of tapered roller bearings to the misalignment of the pinion in a pinion-rack transmission. Mech. Mach. Theory 109, 78–94 (2017)

    Article  Google Scholar 

  11. Chouksey, M., Dutt, J.K., Modak, S.V.: Modal analysis of rotor-shaft system under the influence of rotor-shaft material damping and fluid film forces. Mech. Mach. Theory 48(1), 81–93 (2012)

    Google Scholar 

  12. Kishor, N., Singh, S.P., Raghuvanshi, A.S.: Dynamic simulations of hydro turbine and its state estimation based LQ control. Energy Convers. Manage. 47(18–19), 3119–3137 (2006)

    Article  Google Scholar 

  13. Halanay, A., Safta, C.A., Dragoi, C., Piraianu, V.F.: Stability analysis for a delay differential equations model of a hydraulic turbine speed governor. In: AIP Conference Proceedings, pp. 020134–1020134–9 (2017). https://doi.org/10.1063/1.4972726

  14. Al-Nimr, M.D.A., Tashtoush, B.M., Jaradat, A.A.: Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate. Energy 90, 1239–1250 (2015)

    Article  Google Scholar 

  15. Halanay, A., Murea, C.M., Dan, T.: Existence of a steady flow of stokes fluid past a linear elastic structure using fictitious domain. J. Math. Fluid Mech. 18(2), 397–413 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Badralexi, I., Halanay, A., Radulescu, I.R.: A Lyapunov-Krasovskii functional for a complex system of delay-differential equations. U. Politeh. Buch. Ser. A. 77(2), 9–18 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Li, S.: Effects of misalignment error, tooth modifications and transmitted torque on tooth engagements of a pair ofspur gears. Mech. Mach. Theory 83(83), 125–136 (2015)

    Article  Google Scholar 

  18. Pierre, L., Teissandier, D., Nadeau, J.P.: Variational tolerancing analysis taking thermomechanical strains into account: application to a high pressure turbine. Mech. Mach. Theory 74(6), 82–101 (2013)

    Google Scholar 

  19. Group, W.: Hydraulic turbine and turbine control models for system dynamic studies. IEEE Trans. Power Syst. 7(1), 167–179 (1992)

    Google Scholar 

  20. Gustavsson, R.K., Aidanpää, J.O.: The influence of nonlinear magnetic pull on hydropower generator rotors. J. Sound Vib. 297(3), 551–562 (2006)

    Article  Google Scholar 

  21. Moradi, H., Abbasi, M.H., Moradian, H.: Improving the performance of a nonlinear boiler–turbine unit via bifurcation control of external disturbances: a comparison between sliding mode and feedback linearization control approaches. Nonlinear Dyn. 1, 1–15 (2016)

    MathSciNet  Google Scholar 

  22. Xu, B.B., Chen, D.Y., Zhang, H., Zhou, R.: Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit. Nonlinear Dyn. 81(3), 1263–1274 (2015)

    Article  Google Scholar 

  23. Martínez-Lucas, G., Sarasúa, J.I., Sánchez-Fernández, J.Á., Wilhelmi, J.R.: Frequency control support of a wind-solar isolated system by a hydropower plant with long tail-race tunnel. Renew. Energy 90, 362–376 (2016)

    Article  Google Scholar 

  24. Kishor, N.: Nonlinear predictive control to track deviated power of an identified NNARX model of a hydro plant. Expert Syst. Appl. 35(4), 1741–1751 (2008)

    Article  Google Scholar 

  25. Xu, B.B., Chen, D.Y., Tolo, S.: Model validation and stochastic stability of a hydro-turbine governing system under hydraulic excitations. Int. J. Electr. Power 95, 156–165 (2018)

    Article  Google Scholar 

  26. Zeng, Y., Zhang, L., Guo, Y., Qian, J., Zhang, C.: The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets. Nonlinear Dyn. 76(4), 1921–1933 (2014)

    Article  MATH  Google Scholar 

  27. Trivedi, C., Cervantes, M.J., Gandhi, B.K., Dahlhaug, O.G.: Transient pressure measurements on a high head model Francis turbine during emergency shutdown, total load rejection, and runaway. J. Fluid. Eng. Trans. ASME. 136(12), 121107–18 (2014).https://doi.org/10.1115/1.4027794

  28. Sarasúa, J.I., Pérez-Díaz, J.I., Wilhelmi, J.R., Sánchez-Fernández, J.Á.: Dynamic response and governor tuning of a long penstock pumped-storage hydropower plant equipped with a pump-turbine and a doubly fed induction generator. Energy Convers. Manage. 106, 151–164 (2015)

    Article  Google Scholar 

  29. Pico, H.V., Mccalley, J.D., Angel, A., Leon, R.: Analysis of very low frequency oscillations in hydro-dominant power systems using multi-unit modeling. IEEE Trans. Power Syst. 27(4), 1906–1915 (2012)

    Article  Google Scholar 

  30. Guo, Y., Lambert, S., Wallen, R., Errichello, R., Keller, J.: Theoretical and experimental study on gear-coupling contact and loads considering misalignment, torque, and friction influences. Mech. Mach. Theory 98(8), 242–262 (2016)

    Article  Google Scholar 

  31. Antar, Y.: Boundary layer approximation and nonlinear waves in elastic tubes. Int. J. Eng. Sci. 38(13), 1441–1457 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, B.B., Wang, F.F., Chen, D.Y., Zhang, H.: Hamiltonian modeling of multi-hydro-turbine governing systems with sharing common penstock and dynamic analyses under shock load. Energy Convers. Manage. 108, 478–487 (2016)

    Article  Google Scholar 

  33. Srivastava, K.N., Srivastava, S.C.: Application of Hopf bifurcation theory for determining critical value of a generator control or load parameter. Int. J. Electr. Power 17(5), 347–354 (1995)

    Article  Google Scholar 

  34. Li, H.H., Chen, D.Y., Zhang, H., Wu, C.Z., Wang, X.Y.: Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing. App. Energy 185, 244–253 (2017)

    Article  Google Scholar 

  35. Gustavsson, R.K., Aidanpää, J.O.: Evaluation of impact dynamics and contact forces in a hydropower rotor due to variations in damping and lateral fluid forces. Int. J. Mech. Sci. 51(9–10), 653–661 (2009)

    Article  Google Scholar 

  36. Patel, T.H., Zuo, M.J., Zhao, X.: Nonlinear lateral-torsional coupled motion of a rotor contacting a viscoelastically suspended stator. Nonlinear Dyn. 69(1–2), 325–339 (2012)

    Article  Google Scholar 

  37. Moradi, H., Alasty, A., Vossoughi, G.: Nonlinear dynamics and control of bifurcation to regulate the performance of a boiler–turbine unit. Energy Convers. Manage. 68(4), 105–113 (2013)

    Article  Google Scholar 

  38. Zaitsev, I.O., Levytskyi, A.S., Sydorchuk, V.E.: Air gap control system for hydrogenerators. Devices Methods Meas. 8(2), 122–130 (2017) (Rus). https://doi.org/10.21122/2220-9506-2017-8-2-122-130

  39. Zaitsev, I., Levytskyi, A., Bereznychenko, V.: Hybrid diagnostics systems for power generators faults: systems design principle and shaft run-out sensors. In: Kyrylenko, O., Zharkin, A., et al. (eds.) Power Systems Research and Operation: Selected Problems, pp. 71–98. Springer (2021). https://doi.org/10.1007/978-3-030-82926-1_4

  40. Zaitsev, I.O., Levytskyi, A.S.: Hybrid electro-optic capacitive sensors for the fault diagnostic system of power hydrogenerator. In: Ebrahimi, A. (ed.) Clean Generators-Advances in Modeling of Hydro and Wind Generators, pp. 25–42. Intechopen (2020). https://doi.org/10.5772/intechopen.77988

  41. Blinov, I., Olefir, D., Parus, E.: Model of optimal use of hydro power plants in the electricity market. Tech. Electrodyn. 2, 60–69 (2022). https://doi.org/10.15407/techned2022.04.042

  42. Blinov, I., Olefir, D., Parus, E., Kyrylenko, O.: Improving the Efficiency of HPP and PSHPP Participation in the Electricity Market of Ukraine. In: Kyrylenko, O., Denysiuk, S., Derevianko, D., Blinov, I., Zaitsev, I., Zaporozhets, A. (eds) Power Systems Research and Operation. Studies in Systems, Decision and Control, vol. 220. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-17554-1_3

  43. Levytskyi, A.S, Fedorenko, G.M., Gruboj, O.P.: Monitoring of the status of powerful hydro and turbo generators using capacitive meter for the parameters of mechanical defects. Kyiv, 242 (2011) (Ukr)

    Google Scholar 

  44. Griščenko, M.: Air gap monitoring unit generator to advance vibration diagnostic procedure. Riga 20 (2015)

    Google Scholar 

  45. Zaitsev, I.O., Levytskyi, A.S., Kromplyas, B.A.: Hybrid capacitive sensor for hydro- and turbo generator monitoring system. In: Proceedings of the International Conference on Modern Electrical and Energy System (MEES-17), pp. 288–291 (2017). https://doi.org/10.1109/MEES.2017.8248913

  46. Volkovas, V., Mikalauskas, R., Eidukeviciute, M.: Air gap measuring system for purpose of diagnostics and condition monitoring. In: Proceedings of the 3rd International Congress of Technical Diagnostics’ 2004, vol. 30, no. 2, pp. 169–174 (2004)

    Google Scholar 

  47. Air Gap. Capacitive Measuring Chains. http://vibrosystm.com/wp-content/uploads/9628-25D1A-103.pdf

  48. Air Gap Monitoring System. http://pdf.directindustry.com/pdf/mc-monitoring/agt-525/163977-644798.html

  49. Zaitsev, I.O., Levitskyi, A.S., Kromplias, B.A., Sydorchuk, V.E.: Development of hardware and software of the air gap control system of hydro generators. Electr. Comput. Syst. 24(100), 151–161 (2017). https://doi.org/10.15276/eltecs.24.100.2017.19

  50. Zaitsev, I., Bereznychenko, V., Bajaj, M., Taha, I.B.M., Belkhier, Y., Titko, V., Kamel, S.: Calculation of capacitive-based sensors of rotating shaft vibration for fault diagnostic systems of powerful generators. Sensors 22(1634), 19 (2022). https://doi.org/10.3390/s22041634

    Article  Google Scholar 

  51. Zaitsev, I.O., Levytskyi, A.S., Kromplyas, B.A.: Capacitive distance sensor with coplanar electrodes for large turbogenerator core clamping system. In: Proceedings of the 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), pp. 644–647. Kiev (Ukraine) 16–18 Apr 2019. https://doi.org/10.1109/ELNANO.2019.8783916

  52. Zaitsev, I., Levytskyi, A., Kromplyas, B., Panchyk, M., Bereznychenko, V.: Study influence industrial frequency magnetic field on capacitive pressing sensor for large turbogenerator core clamping system. In: Proceedings of the 2019 IEEE Ukraine International Conference on Electrical and Computer Engineering (UKRCON-2019), pp. 566–569, Lviv (Ukraine) 2–6 July 2019. https://doi.org/10.1109/UKRCON.2019.8879949

  53. Zaitsev, I.O., Levytskyi, A., Bereznychenko, V.: Analysis of the technological production defects influence on response function of shaft run-out sensor for generator fault diagnosis system. In: Proceedings of the Ukraine International Conference on Electrical and Computer Engineering (UKRCON-2021), pp. 435–438

    Google Scholar 

  54. Lviv(Ukraine) (2021). https://doi.org/10.1109/UKRCON53503.2021.9575886

  55. Levitsky, A.S., Zaitsev, I.O., Kromplias, B.A.: Determination of the conversion function of the capacitive sensor of the air gap in the hydrogen generator SGK 538/160–70M. Pr. Works of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, vol. 43, pp. 134–137 (2016) (Ukr)

    Google Scholar 

  56. Condition monitoring and diagnostics of machines—hydroelectric generating units. (ISO 19283:2020)

    Google Scholar 

  57. Norms of electrical equipment testing. Ministry of Energy and Environmental Protection of Ukraine (SOU-N EE 20.302:2020)

    Google Scholar 

  58. Mechanical vibration—Measurement and evaluation of machine vibration—Part 5: Machine sets in hydraulic power generating and pump-storage plants (ISO 20816-5:2018)

    Google Scholar 

  59. Zaitsev, I.O., Levytskyi, A.S., Kromplyas, B.A.: Characteristic of capacitive sensor for the air gap control system in the hydrogenerator. In: Proceedings of the 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), May 29–June 2 2017, pp. 390–394, Kyiv(Ukraine) (2017). https://doi.org/10.1109/UKRCON.2017.8100516

  60. Zaitsev, I.O., Levytskyi, A.S.: Determination of response characteristic of capacitive coplanar air gap sensor. In: Proceedings of the 2017 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS-2017), August 29–June 30 2017, pp. 85–88, Kyiv (Ukraine) (2017). https://doi.org/10.1109/MRRS.2017.8075034

  61. Zaitsev, I.O., Levytskyi, A.S., Novik, A.I., Bereznychenko, V.O., Smyrnova, A.M.: Research of a capacitive distance sensor to grounded surface. Telecommun. Radio Eng. 78(2), 173–180 (2019). https://doi.org/10.1615/TelecomRadEng.v78.i2.80

  62. Zaitsev, I.O.: Development of the theory and practical implementation of optoelectronic systems for diagnosing mechanical parameters of powerful turbo- and hydrogen generators. Kyiv 424 (2020) (Ukr)

    Google Scholar 

  63. Badeeva, E.A., Murashkina, T.I., Brostilova, T.Yu.: Principles of construction, models and design of fiber-optic pressure sensors of the reflective type. Models Syst. Netw. Econ. Technol. Nat. Soc. 2(26), 99–106 (2018)

    Google Scholar 

  64. Levytskyi, A., Rassovskyi, V., Zaitsev, I., Sorokina, N.: Pat. Application of Ukraine No. a 2022 02059, MKY G01B7/14. Capacitive sensor for measuring the air gap in hydrogen generators (2022) (Ukr)

    Google Scholar 

  65. Bagheri, A., Ojaghi, M., Bagheri, A.: Air-gap eccentricity fault diagnosis and estimation in induction motors using unscented Kalman filter. Int. Trans. Electr. Energy Syst. 30(8), 28 (2020). https://doi.org/10.1002/2050-7038.12450

    Article  Google Scholar 

  66. Masoumi, Z., Moaveni, B., Mohammad, S., Gazafrudi, M., Faiz, J.: Air-gap eccentricity fault detection, isolation, and estimation for synchronous generators based on eigenvalues analysis. ISA Trans. 131, 489–500 (2022). https://doi.org/10.1016/j.isatra.2022.04.038

    Article  Google Scholar 

  67. Vesnin, V.L.: Gaussian approximation of the reflection spectrum peak of a fiber-optic Bragg sensor. Izvestiya SNTs RAS. 1(5), 156–164 (2003)

    Google Scholar 

  68. Zaitsev, I.O.: Software and mathematical support of hydrogenerator rotor eccentricity identification systems based on data from air gap sensors. Hydropow. Ukraine. 3–4, 50–56 (2018) (Ukr)

    Google Scholar 

  69. Zakusylo, S.A., Zaitsev, I.O., Levytskyi, A.S., Zhukinskyi, I.M.: Development of a mathematical model for determining the static eccentricity of the rotor of hydrogen generators. In: Proceedings of the XIX International Scientific and Practical Conference Renewable Energy and Energy Efficiency in the XXI Century, Kyiv, Ukraine, pp. 515–519 (2018)

    Google Scholar 

  70. Fuks-Rabinovich, L.I., Epifanov, M.V.: Optoelectronic devices: monograph. Leningrad 362 (1979) (Rus)

    Google Scholar 

  71. Zaitsev, I.O.: Model of air gap change in hydro and turbo generators. Mathematical and software support of intelligent systems. In: Proccedding of the XV International Scientific and Practical Conference, Nov 20–22, pp. 77–78 (2017)

    Google Scholar 

  72. Besnerais, J.L.: Effect of lamination asymmetries on magnetic vibrations and acoustic noise in synchronous machines. In: Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), Oct 25–28 2015, pp. 1729–1733. Pattaya City (Thailand) (2015)

    Google Scholar 

  73. Kallaste, A.: Analysis of the eccentricity in a low speed slotless permanent-magnet wind generato. In: Proceedings of 8th International Conference 2012 Electric Power Quality and Supply Reliability, Tartu, pp. 47–52 (2012)

    Google Scholar 

  74. Muravlev, O.P., Strelbitsky, E.K.: Determination of air gap non-uniformity in asynchronous motors according to the quality control department data on the number of rotor grazing over the stator. Izvestiya TPI 145, 121–127 (1966)

    Google Scholar 

  75. Alexandrov, A.E., Gushchin, E.V., Kulakovskiy, V.B., Mamikonyantsa, L.G., Elkinda, Yu.M.: Detection of defects in hydrogenerators. Moscow 232 (1985) (Rus)

    Google Scholar 

  76. Toliyat, A.H., Nandi, S., Choi, S., Meshgin-Kelk, H.: Electric Machines: modeling, condition monitoring, and fault diagnosis. Boca Raton 272 (2012)

    Google Scholar 

  77. Evdokimov, Yu.K., Lindval, V.R., Shcherbakov, G.I.: LabVIEW for radio engineers: from a virtual model to a real instrument. A practical guide to working in the LabVIEW software environment. Moscow 400 (2007) (Rus)

    Google Scholar 

  78. Travis, J., Kring, J.: LabVIEW for everyone: A study guide. Moscow 880 (2010) (Rus)

    Google Scholar 

  79. Levytskyi, A.S., Zaitsev, I.O., Bereznychenko, V.O., Sukhorukova, O.E.: Measuring transducer for air gap capacitive sensor in hydrogenerator. Devices Methods Meas. 11(1), 33–41 (2020) (Rus). https://doi.org/10.21122/2220-9506-2020-11-1-33-41

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ievgen Zaitsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaitsev, I., Levytskyi, A., Bereznychenko, V., Rassovskyi, V. (2024). Air-Gap Sensors for Hydro Generators and Techniques for Air-Gap Eccentricity Fault Detection and Estimation. In: Kyrylenko, O., Denysiuk, S., Strzelecki, R., Blinov, I., Zaitsev, I., Zaporozhets, A. (eds) Power Systems Research and Operation. Studies in Systems, Decision and Control, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-031-44772-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44772-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44771-6

  • Online ISBN: 978-3-031-44772-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics