Skip to main content

Enhancing Stability of in Situ Crosslinked Hydrogel N,O-Carboxymethyl Chitosan – Aldehyde Hyaluronate by Supplementing Ionic Crosslinking of Alginate and Calcium Ions

  • Conference paper
  • First Online:
9th International Conference on the Development of Biomedical Engineering in Vietnam (BME 2022)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 95))

  • 174 Accesses

Abstract

Hydrogels based on Schiff’s base reaction of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronate (AHy) have been applied widely in several biomedical fields such as drug delivery, post-operative anti-adhesion, tissue regeneration, etc. However, their low mechanical strength and rapid degradation limit their use in longer-duration applications. This study aimed to investigate the effects of supplementing another biopolymer, alginate (Alg), to enhance the hydrogel crosslink network via ionic crosslinking with Ca2+ ions from calcium chloride (CaCl2). The hydrogel samples were characterised by their crossectional morphology, FTIR spectra, porosity, compression modulus, and swelling–degradation behaviours. Cytotoxicity and cell viability were also evaluated. The results revealed that this simple approach successfully improved the mechanical strength and stability of the hydrogel while conserving the in vitro biocompatibility. This suggested expanded potential biomedical applications of the hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thakur, S., Thakur, V.K., Arotiba, O.A.: History, classification, properties and application of hydrogels: an overview. Hydrogels 29–50 (2018)

    Google Scholar 

  2. Das, A., Ringu, T., Ghosh, S., Pramanik, N.: A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym. Bull. (2022)

    Google Scholar 

  3. Verma, D., Fortunati, E.: 1 – Biopolymer processing and its composites: an introduction. In: Verma, D., Fortunati, E., Jain, S., Zhang, X. (eds.) Biomass, Biopolymer-Based Materials, and Bioenergy. Woodhead Publishing Series in Composites Science and Engineering. Woodhead Publishing, pp. 3–23 (2019)

    Google Scholar 

  4. Kravanja, G., Primožič, M., Knez, Ž, Leitgeb, M.: Chitosan-based (nano) materials for novel biomedical applications. Molecules 24, 1960 (2019)

    Article  Google Scholar 

  5. Aguilar, A., Zein, N., Harmouch, E., et al.: Application of chitosan in bone and dental engineering. Molecules 24, 3009 (2019)

    Article  Google Scholar 

  6. Kim, H., Jeong, H., Han, S., et al.: Hyaluronate and its derivatives for customized biomedical applications. Biomaterials 123, 155–171 (2017)

    Article  Google Scholar 

  7. Li, L., Wang, N., Jin, X., et al.: Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 35, 3903–3917 (2014)

    Article  Google Scholar 

  8. Nguyen, N.T.-P., Nguyen, L.V.-H., Tran, N.M.-P., et al.: The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid. Mater. Sci. Eng. C 103, 109670 (2019)

    Article  Google Scholar 

  9. Le, A.N.-M., Nguyen, T.T., Ly, K.L., et al.: Modulating biodegradation and biocompatibility of in situ crosslinked hydrogel by the integration of alginate into N,O-carboxylmethyl chitosan–aldehyde hyaluronic acid network. Polym. Degrad. Stabil. 180, 109270 (2020)

    Article  Google Scholar 

  10. Hasnain, M.S., Jameel, E., Mohanta, B., Dhara, A.K., Alkahtani, S., Nayak, A.K.: Chapter 1 – Alginates: sources, structure, and properties. In: Nayak, A.K., Hasnain, M.S. (eds.) Alginates in Drug Delivery, pp. 1–17. Academic Press (2020)

    Google Scholar 

  11. Sergeeva, A., Vikulina, A.S., Volodkin, D.: Porous alginate scaffolds assembled using vaterite CaCO3 crystals. Micromachines 10, 357 (2019)

    Article  Google Scholar 

  12. Sarker, B., Boccaccini, A.R.: Alginate utilization in tissue engineering and cell therapy. In: Rehm, B.H.A., Fata Moradali, M. (eds.) Alginates and Their Biomedical Applications, pp. 121–155. Springer Singapore, Singapore (2018). https://doi.org/10.1007/978-981-10-6910-9_5

    Chapter  Google Scholar 

  13. Tang, S., Yang, J., Lin, L., et al.: Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem. Eng. J. 393, 124728 (2020)

    Article  Google Scholar 

  14. Piras, C.C., Smith, D.K.: Multicomponent polysaccharide alginate-based bioinks. J. Mater. Chem. B 8, 8171–8188 (2020)

    Article  Google Scholar 

  15. ISO E. 10993-5: 2009 – Biological Evaluation of Medical Devices – Part 5: Tests for in vitro Cytotoxicity (ISO 10993-5: 2009). German Version (2009)

    Google Scholar 

  16. Cao, L., Lu, W., Mata, A., Nishinari, K., Fang, Y.: Egg-box model-based gelation of alginate and pectin: a review. Carbohydr. Polym. 242, 116389 (2020)

    Article  Google Scholar 

  17. Kuo, C.K., Ma, P.X.: Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro. J. Biomed. Mater. Res. A 84A, 899–907 (2008)

    Article  Google Scholar 

  18. Lin, Y.-H., Liang, H.-F., Chung, C.-K., Chen, M.-C., Sung, H.-W.: Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 26, 2105–2113 (2005)

    Article  Google Scholar 

  19. Liu, Z., Jiao, Y., Zhang, Z.: Calcium-carboxymethyl chitosan hydrogel beads for protein drug delivery system. J. Appl. Polym. Sci. 103, 3164–3168 (2007)

    Article  Google Scholar 

  20. Miao, J., Chen, G., Gao, C., Lin, C., Wang, D., Sun, M.: Preparation and characterization of N,O-carboxymethyl chitosan (NOCC)/polysulfone (PS) composite nanofiltration membranes. J. Membr. Sci. 280, 478–484 (2006)

    Article  Google Scholar 

  21. Ţucureanu, V., Matei, A., Avram, A.M.: FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 46, 502–520 (2016)

    Article  Google Scholar 

  22. Cinarli, A., Gürbüz, D., Tavman, A., Birteksöz, A.S.: Synthesis, spectral characterizations and antimicrobial activity of some Schiff bases of 4-chloro-2-aminophenol. Bull. Chem. Soc. Ethiopia 25 (2011)

    Google Scholar 

  23. Papageorgiou, S.K., Kouvelos, E.P., Favvas, E.P., Sapalidis, A.A., Romanos, G.E., Katsaros, F.K.: Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 345, 469–473 (2010)

    Article  Google Scholar 

  24. Gu, Z., Huang, K., Luo, Y., et al.: Double network hydrogel for tissue engineering. WIREs Nanomed. Nanobiotechnol. 10, e1520 (2018)

    Article  Google Scholar 

  25. Chu, W., Nie, M., Ke, X., Luo, J., Li, J.: Recent advances in injectable dual crosslinking hydrogels for biomedical applications. Macromol. Biosci. 21, 2100109 (2021)

    Article  Google Scholar 

  26. Maitra, J., Shukla, V.: Cross-linking in hydrogels – a review. Am. J. Polym. Sci. 4, 25–31 (2014)

    Google Scholar 

  27. Temenoff, J.S., Mikos, A.G.: Materials for Biomedical Applications. In: Biomaterials : The Intersection of Biology and Materials Science. Pearson/Prentice Hall, Upper Saddle River, N.J. (2008)

    Google Scholar 

  28. Andersen, T., Auk-Emblem, P., Dornish, M.: 3D cell culture in alginate hydrogels. Microarrays 4, 133–161 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by International University, VNU-HCM under grant number SV2021-BME-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi-Hiep Nguyen .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, TN., Nguyen, Q.DT., Dang-Ngoc, TN., Nguyen, TH. (2024). Enhancing Stability of in Situ Crosslinked Hydrogel N,O-Carboxymethyl Chitosan – Aldehyde Hyaluronate by Supplementing Ionic Crosslinking of Alginate and Calcium Ions. In: Vo, V.T., Nguyen, TH., Vong, B.L., Le, N.B., Nguyen, T.Q. (eds) 9th International Conference on the Development of Biomedical Engineering in Vietnam. BME 2022. IFMBE Proceedings, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-031-44630-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44630-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44629-0

  • Online ISBN: 978-3-031-44630-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics