Skip to main content

Nonspherical Iron Oxide Particles: Synthesis and Applications in Interfacial Science and Engineering

  • Chapter
  • First Online:
Iron Oxide-Based Nanocomposites and Nanoenzymes

Abstract

The ability to synthesize highly stable monodisperse iron oxide particles of different sizes and shapes, in particular, hematite (α-Fe2O3), has enabled fundamental investigation of particle shape effects in colloids and interface science. In this chapter, an overview of wet chemical approaches for the synthesis of hematite particles of different shapes and their use in the fundamental study of interfacial behavior of particles is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar H, Dugyala VR, Basavaraj MG (2021) Phase inversion of ellipsoid stabilized emulsions. Langmuir 37(24):7295–7304

    Article  PubMed  Google Scholar 

  2. Madivala B, Vandebril S, Fransaer J, Vermant J (2009) Exploiting particle shape in solid stabilized emulsions. Soft Matter 5(8):1717–1727

    Article  Google Scholar 

  3. Dugyala VR, Daware SV, Basavaraj MG (2013) Shape anisotropic colloids: synthesis, packing behavior, evaporation driven assembly, and their application in emulsion stabilization. Soft Matter 9(29):6711–6725

    Article  Google Scholar 

  4. Dugyala VR, Basavaraj MG (2015) Self-assembly of nano-ellipsoids into ordered structures via vertical deposition. RSC Adv 5(74):60079–60084

    Article  Google Scholar 

  5. Amendola V, Meneghetti M, Granozzi G, Agnoli S, Polizzi S, Riello P, Boscaini A, Anselmi C, Fracasso G, Colombatti M et al (2011) Top-down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation. J Mater Chem 21(11):3803–3813

    Article  Google Scholar 

  6. Indiarto R, Indriana LPA, Andoyo R, Subroto E, Nurhadi B (2021) Bottom–up nanoparticle synthesis: a review of techniques, polyphenol-based core materials, and their properties. Eur Food Res Technol 14:1–24

    Google Scholar 

  7. Shavel A, Liz-Marzán LM (2009) Shape control of iron oxide nanoparticles. Phys Chem Chem Phys 11(19):3762–3766

    Article  PubMed  Google Scholar 

  8. Ocaña M, Morales M, Serna C (1999) Homogeneous precipitation of uniform α-Fe2O3 particles from iron salts solutions in the presence of urea. J Colloid Interf Sci 212(2):317–323

    Article  Google Scholar 

  9. Ozaki M, Kratohvil S, Matijević E (1984) Formation of monodispersed spindle type hematite particles. J Colloid Interf Sci 102(1):146–151

    Article  Google Scholar 

  10. Kuijk A, Van Blaaderen A, Imhof A (2011) Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J Am Chem Soc 133(8):2346–2349

    Article  PubMed  Google Scholar 

  11. Sugimoto T, Khan MM, Muramatsu A (1993) Preparation of monodisperse peanut-type α-Fe2O3 particles from condensed ferric hydroxide gel. Colloids Surf A Physicochem Eng Aspects 70(2):167–169

    Article  Google Scholar 

  12. Anjali TG, Basavaraj MG (2018) Influence of pH and salt concentration on Pickering emulsions stabilized by colloidal peanuts. Langmuir 34(44):13312–13321

    Article  PubMed  Google Scholar 

  13. Lama H, Dugyala VR, Basavaraj MG, Satapathy DK (2016) Magnetic field-driven crack formation in an evaporated anisotropic colloidal assembly. Phys Rev E 94(1):012618

    Article  PubMed  Google Scholar 

  14. Matijević E (1976) Preparation and characterization of monodispersed metal hydrous oxide sols. Colloids and surfaces. Springer, New York, pp 24–35

    Chapter  Google Scholar 

  15. Matijević E (1977) The role of chemical complexing in the formation and stability of colloidal dispersions. J Colloid Interf Sci 58(2):374–389

    Article  Google Scholar 

  16. Matijević E, Scheiner P (1978) Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe(III)–chloride, –nitrate, and –perchlorate solutions. J Colloid Interf Sci 63(3):509–524

    Article  Google Scholar 

  17. Matijevic E (1981) Monodispersed metal (hydrous) oxides-a fascinating field of colloid science. Accounts Chem Res 14(1):22–29

    Article  Google Scholar 

  18. Matijevic E (1993) Preparation and properties of uniform size colloids. Chem Mater 5(4):412–426

    Article  Google Scholar 

  19. Sugimoto T, Sakata K (1992) Preparation of monodisperse pseudo cubic α-Fe2O3 particles from condensed ferric hydroxide gel. J Colloid Interf Sci 152(2):587–590

    Article  Google Scholar 

  20. Shavel A, Rodríguez-González B, Spasova M, Farle M, Liz-Marzán LM (2007) Synthesis and characterization of iron/iron oxide core/shell nanocubes. Adv Funct Mater 17(18):3870–3876

    Article  Google Scholar 

  21. Sugimoto T, Matijević E (1980) Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J Colloid Interf Sci 74(1):227–243

    Article  Google Scholar 

  22. Matijević E, Sapieszko RS, Melville JB (1975) Ferric hydrous oxide sols I. Monodispersed basic iron(III) sulfate particles. J Colloid Interf Sci 50(3):567–581

    Article  Google Scholar 

  23. Ozaki M, Matijević E (1985) Preparation and magnetic properties of monodispersed spindle-type γ-Fe2O3 particles. J Colloid Interf Sci 107(1):199–203

    Article  Google Scholar 

  24. Ishikawa T, Matijevic E (1988) Formation of monodispersed pure and coated spindle-type iron particles. Langmuir 4(1):26–31

    Article  Google Scholar 

  25. Sugimoto T, Wang Y, Itoh H, Muramatsu A (1998) Systematic control of size, shape and internal structure of monodisperse α-Fe2O3 particles. Colloids Surf A Physicochem Eng Aspects 134(3):265–279

    Article  Google Scholar 

  26. Hamada S, Matijević E (1982) Formation of monodispersed colloidal cubic hematite particles in ethanol + water solutions. J Chem Soc Faraday Trans I Phys Chem Conden Phases 78(7):2147–2156

    Google Scholar 

  27. Hamada S, Matijević E (1981) Ferric hydrous oxide sols. IV. Preparation of uniform cubic hematite particles by hydrolysis of ferric chloride in alcohol–water solutions. J Colloid Interf Sci 84(1):274–277

    Article  Google Scholar 

  28. Sugimoto T (1989) Preparation and characterization of monodispersed colloidal particles. MRS Bull 14(12):23–28

    Article  Google Scholar 

  29. Sapieszko RS, Matijević E (1980) Preparation of well-defined colloidal particles by thermal decomposition of metal chelates. I. Iron oxides. J Colloid Interf Sci 74(2):405–422

    Article  Google Scholar 

  30. Ozaki M, Ookoshi N, Matijević E (1990) Preparation and magnetic properties of uniform hematite platelets. J Colloid Interf Sci 137(2):546–549

    Article  Google Scholar 

  31. Sugimoto T, Wang Y (1998) Mechanism of the shape and structure control of monodispersed α-Fe2O3 particles by sulfate ions. J Colloid Interf Sci 207(1):137–149

    Article  Google Scholar 

  32. Kloust H, Zierold R, Merkl J-P, Schmidtke C, Feld A, Poselt E, Kornowski A, Nielsch K, Weller H (2015) Synthesis of iron oxide nanorods using a template mediated approach. Chem Mater 27(14):4914–4917

    Article  Google Scholar 

  33. Meijer J, Rossi L (2021) Preparation, properties, and applications of magnetic hematite microparticles. Soft Matter 17(9):2354–2368

    Article  PubMed  Google Scholar 

  34. Anjali TG, Basavaraj MG (2016) Contact angle and detachment energy of shape anisotropic particles at fluid–fluid interfaces. J Colloid Interf Sci 478:63–71

    Article  Google Scholar 

  35. Hamada S, Niizeki S, Kudo Y (1986) The precipitation of monodispersed α-iron(III) oxide particles from iron(III) chloride–glycine system in aqueous and 2-propanol/water media. Bull Chem Soc Jpn 59(11):3443–3450

    Article  Google Scholar 

  36. Bailey JK, Brinker CJ, Mecartney ML (1993) Growth mechanisms of iron oxide particles of differing morphologies from the forced hydrolysis of ferric chloride solutions. J Colloid Interf Sci 157(1):1–13

    Article  Google Scholar 

  37. Jia B, Gao L (2008) Growth of well-defined cubic hematite single crystals: oriented aggregation and Ostwald ripening. Cryst Growth Des 8(4):1372–1376

    Article  Google Scholar 

  38. Pieranski P (1980) Two-dimensional interfacial colloidal crystals. Phys Rev Lett 45(7):569

    Article  Google Scholar 

  39. Dugyala VR, Anjali TG, Upendar S, Mani E, Basavaraj MG (2016) Nano ellipsoids at the fluid–fluid interface: effect of surface charge on adsorption, buckling and emulsification. Faraday Discuss 186:419–434

    Article  PubMed  Google Scholar 

  40. Sabapathy M, Md KZ, Kumar H, Ramamirtham S, Mani E, Basavaraj MG (2022) Exploiting heteroaggregation to quantify the contact angle of charged colloids at interfaces. Langmuir 38:7433–7441

    Article  PubMed  Google Scholar 

  41. Sabapathy M, Kollabattula V, Basavaraj MG, Mani E (2015) Visualization of the equilibrium position of colloidal particles at fluid–water interfaces by deposition of nanoparticles. Nanoscale 7(33):13868–13876

    Article  PubMed  Google Scholar 

  42. Loudet J-C, Yodh AG, Pouligny B (2006) Wetting and contact lines of micrometer-sized ellipsoids. Phys Rev Lett 97(1):018304

    Article  PubMed  Google Scholar 

  43. Paunov VN (2003) Novel method for determining the three-phase contact angle of colloid particles adsorbed at air–water and oil–water interfaces. Langmuir 19(19):7970–7976

    Article  Google Scholar 

  44. Isa L, Samudrala N, Dufresne ER (2014) Adsorption of sub-micron amphiphilic dumbbells to fluid interfaces. Langmuir 30(18):5057–5063

    Article  PubMed  Google Scholar 

  45. Maestro A, Guzmán E, Ortega F, Rubio RG (2014) Contact angle of micro and nanoparticles at fluid interfaces. Curr Opin Colloid Interf Sci 19(4):355–367

    Article  Google Scholar 

  46. Binks BP, Horozov TS (2006) Colloidal particles at liquid interfaces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  47. Lehle H, Noruzifar E, Oettel M (2008) Ellipsoidal particles at fluid interfaces. Eur Phys J E 26(1):151–160

    Article  PubMed  Google Scholar 

  48. Botto L, Lewandowski EP, Cavallaro M, Stebe KJ (2012) Capillary interactions between anisotropic particles. Soft Matter 8(39):9957–9971

    Article  Google Scholar 

  49. Madivala B, Fransaer J, Vermant J (2009) Self-assembly and rheology of ellipsoidal particles at interfaces. Langmuir 25(5):2718–2728

    Article  PubMed  Google Scholar 

  50. Dasgupta S, Katava M, Faraj M, Auth T, Gompper G (2014) Capillary assembly of microscale ellipsoidal, cuboidal, and spherical particles at interfaces. Langmuir 30(40):11873–11882

    Article  PubMed  Google Scholar 

  51. Anjali TG, Basavaraj MG (2017) Shape-induced deformation, capillary bridging, and self-assembly of cuboids at the fluid–fluid interface. Langmuir 33(3):791–801

    Article  PubMed  Google Scholar 

  52. Soligno G, Dijkstra M, van Roij R (2018) Self-assembly of cubic colloidal particles at fluid–fluid interfaces by hexapolar capillary interactions. Soft Matter 14(1):42–60

    Article  Google Scholar 

  53. Lewandowski EP, Cavallaro M, Botto L, Bernate JC, Garbin V, Stebe KJ (2010) Orientation and self-assembly of cylindrical particles by anisotropic capillary interactions. Langmuir 26(19):15142–15154

    Article  PubMed  Google Scholar 

  54. Soligno G, Dijkstra M, van Roij R (2016) Self-assembly of cubes into 2D hexagonal and honeycomb lattices by hexapolar capillary interactions. Phys Rev Lett 116(25):258001

    Article  PubMed  Google Scholar 

  55. Loudet J-C, Alsayed AM, Zhang J, Yodh AG (2005) Capillary interactions between anisotropic colloidal particles. Phys Rev Lett 94(1):018301

    Article  PubMed  Google Scholar 

  56. Binks BP (2002) Particles as surfactants-similarities and differences. Curr Opin Colloid Interf Sci 7(1–2):21–41

    Article  Google Scholar 

  57. Kumar H, Basavaraj MG (2022) Plant latex as a versatile and sustainable emulsifier. Langmuir 38(43):13217–13225

    Article  PubMed  Google Scholar 

  58. Anjali TG, Basavaraj MG (2017) General destabilization mechanism of pH-responsive Pickering emulsions. Phys Chem Chem Phys 19(45):30790–30797

    Article  PubMed  Google Scholar 

  59. Kumar H, Upendar S, Mani E, Basavaraj GM (2022) Destabilization of Pickering emulsions by interfacial transport of mutually soluble solute. J Colloid Interf Sci 633:166–176

    Article  Google Scholar 

  60. De Folter JW, Hutter EM, Castillo SI, Klop KE, Philipse AP, Kegel WK (2014) Particle shape anisotropy in Pickering emulsions: cubes and peanuts. Langmuir 30(4):955–964

    Article  PubMed  Google Scholar 

  61. Upendar S, Mani E, Basavaraj MG (2021) Pickering emulsions stabilized by sphere-spheroid mixtures. J Dispers Sci Technol 42(13):2022–2031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madivala G. Basavaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, H., Anjali, T.G., Basavaraj, M.G. (2024). Nonspherical Iron Oxide Particles: Synthesis and Applications in Interfacial Science and Engineering. In: Sahoo, H., Sahoo, J.K. (eds) Iron Oxide-Based Nanocomposites and Nanoenzymes. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-44599-6_14

Download citation

Publish with us

Policies and ethics