Skip to main content

TP Grid Structure of Functions

  • Chapter
  • First Online:
Dual-Control-Design

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 17))

  • 28 Accesses

Abstract

There are two conceptually important steps of the TS Fuzzy model transformation. One is to extract the TP grid structure of functions. The TP grid structure captures all numerical information that will be important to derive the TP function or TS Fuzzy model variant of a given function or model. The TP grid structure is essentially the component-wise discretized variant of the TP functions or TS Fuzzy models. The role of the other important step of the TS Fuzzy model transformation is to increase the grid density of the TP grid structure to infinity in a numerical sense, which I will refer to as the “refinement” of the TP grid structure. This chapter shows how to transform discretized functions via Higher Order Singular Value Decomposition to a product of a tensor and matrices, which is the tensor product variant of the discretized function. The chapter also discusses how to control the trade-off between the complexity and accuracy of the decomposition and gives further practical hints. The chapter presents numerical examples to show how to easily determine the TP grid structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baranyi P, Yam Y, Várlaki P (2017) Tensor product model transformation in polytpic model based control, series. Automation and control engineering. CRC Press, Taylor & Frances Group. ISBN 9781138077782, CAT K34341

    Google Scholar 

  2. Baranyi P (2016) TP-Model transformation based control design frameworks, series. Control engineering. Springer. ISBN 978-3-319-19605-3

    Google Scholar 

  3. Baranyi P (2014) The generalized TP model transformation for T-S fuzzy model manipulation and generalized stability verification. IEEE Trans Fuzzy Syst 22(4):934–948

    Article  Google Scholar 

  4. Baranyi P (2022) How to vary the input space of a T-S fuzzy model: a TP model transformation-based approach. IEEE Trans Fuzzy Syst 30(2):345–356

    Article  Google Scholar 

  5. Baranyi P (2020) Extracting LPV and qLPV structures from state-space functions: a TP model transformation based framework. IEEE Trans Fuzzy Syst 28(3):499–509

    Article  Google Scholar 

  6. Baranyi P (2015) TP model transformation as a manipulation tool for qLPV analysis and design. Asian J Control 17(2):497–507

    Article  MathSciNet  Google Scholar 

  7. Várkonyi P, Tikk D, Korondi P, Baranyi P (2005) A new algorithm for RNO-INO type tensor product model representation. In: Proceedings of the 9th IEEE international conference on intelligent engineering systems, pp 263–266

    Google Scholar 

  8. Galambos P, Baranyi P (2014) TP\(^\tau \) model transformation: a systematic modelling framework to handle internal time delays in control systems. Asian J Control 17(2):486–496

    Google Scholar 

  9. Tikk D, Baranyi P, Patton R, Tar J (2004) Approximation capability of TP model forms. Aust J Intell Inf Process Syst 8:155–163

    Google Scholar 

  10. De Lathauwer L, De Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal 21(4):1253–1278

    Article  MathSciNet  Google Scholar 

  11. Stewart G (1993) On the early history of the singular value decomposition. SIAM Rev 35:551–556

    Article  MathSciNet  Google Scholar 

  12. Baranyi P, Yam Y (1997) Singular value-based approximation with Takagi-Sugeno type fuzzy rule base. In: Proceedings of 6th international fuzzy systems conference, vol 1, pp 265–270

    Google Scholar 

  13. Kuti J, Galambos P, Baranyi P (2017) Minimal volume simplex (MVS) polytopic model generation and manipulation methodology for TP model transformation. Asian J Control 19(1):289–301

    Article  MathSciNet  Google Scholar 

  14. Varkonyi-Koczy A, Ruano A, Baranyi P, Takacs O (2001) Anytime information processing based on fuzzy and neural network models. In: 18th IEEE instrumentation and measurement technology conference, pp 1247–1252

    Google Scholar 

  15. Baranyi P, Petres Z, Varkonyi PL, Korondi P, Yam Y (2006) Determination of different polytopic models of the prototypical aeroelastic wing section by TP model transformation. J Adv Comput Intell Intell Inf 10(4):486–493

    Google Scholar 

  16. Baranyi P, Korondi P, Tanaka K (2009) Parallel distributed compensation based stabilization of a 3-DOF RC helicopter: a tensor product transformation based approach. J Adv Comput Intell Intell Inf 13(1):25–34

    Article  Google Scholar 

  17. Baranyi P, Lei K, Yam Y (2000) Complexity reduction of singleton based neuro-fuzzy algorithm. In: IEEE international conference on Systems, Man and Cybernetics, pp 2503–2508

    Google Scholar 

  18. Petres Z, Baranyi P, Hashimoto H (2010) Approximation and complexity trade-off by TP model transformation in controller design: a case study of the TORA system. Asian J Control 12(5):575–585

    Article  MathSciNet  Google Scholar 

  19. Baranyi P, Yam Y, Tikk D, Patton R (2003) Trade-off between approximation accuracy and complexity: TS controller design via HOSVD based complexity minimization. In: Casillas J, Cordón O, Herrera F, Magdalena L (eds) Studies in fuzziness and soft computing, vol 128. Interpretability issues in fuzzy modeling. Springer, pp 249–277

    Google Scholar 

  20. Beltrami E (1873) Sulle funzioni bilineari. Giornale di Matematiche ad Uso degli Studenti Delle Universita 11(4):98–106

    Google Scholar 

  21. Jordan C (1874) Mémoire sur les formes bilinéaires. Journal de Mathématiques Pures et Appliquées 19(4):35–54

    Google Scholar 

  22. Jordan C (1874) Surla réduction des formes bilinéaires. Comptes Rendus de l’Academie Sciences 78(4):614–617

    Google Scholar 

  23. Tucker L (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31(3):279–311

    Article  MathSciNet  Google Scholar 

  24. Kolda T, Bader B (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500

    Article  MathSciNet  Google Scholar 

  25. Kruskal J (1989) Rank, decomposition, and uniqueness for 3-way and n-way arrays. Multiway Data Anal 52:7–18

    MathSciNet  Google Scholar 

  26. Tikk D, Baranyi P, Patton R (2008) Approximation properties of TP model forms and its consequences to TPDC design framework. Asian J Control 9(3):221–231

    Article  MathSciNet  Google Scholar 

  27. Baranyi P, Szeidl L, Várlaki P, Yam Y (2006) Definition of the HOSVD based canonical form of polytopic dynamic models. In: Proceedings of the 2006 IEEE international conference on mechatronics, pp 660–665

    Google Scholar 

  28. Baranyi P, Szeidl L, Várlaki P (2006) Numerical reconstruction of the HOSVD based canonical form of polytopic dynamic models. In:Proceedings of the 10th international conference on intelligent engineering systems, pp 196–201

    Google Scholar 

  29. Szeidl L, Varlaki P (2009) HOSVD based canonical form for polytopic models of dynamic systems. J Adv Comput Intell Intell Inf 13(1):52–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Baranyi .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baranyi, P. (2023). TP Grid Structure of Functions. In: Dual-Control-Design. Topics in Intelligent Engineering and Informatics, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-031-44575-0_5

Download citation

Publish with us

Policies and ethics