Skip to main content

Example II: TS Fuzzy Model Variants of the Aeroelastic Wing Section

  • Chapter
  • First Online:
Dual-Control-Design

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 17))

  • 30 Accesses

Abstract

This chapter provides an additional example to study the use of, and to examine the effectiveness of all capabilities of the TS Fuzzy model transformation presented earlier. This example concentrates on the complex model of a real engineering control problem involving a complex aeroelastic wing section, traditionally used for both theoretical and experimental analysis of aeroelastic behaviour. The model in the example is a 2DoF aeroelastic wing section that originates from the Nonlinear Aeroelastic Test Apparatus (NATA) model investigated with unsteady aerodynamics. The aim is to design a control system for stabilizing the pitch and plunge motion of the wing by controlling the dynamics of the trailing edge actuator. The example demonstrates that selecting alternative antecedent membership functions or parameter spaces leads to completely different TS Fuzzy models (representing the same dynamics). MATLAB codes are also provided for each part of the examples to illustrate the routine-like usability of the TS Fuzzy model transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baranyi P, Yam Y, Várlaki P (2017) Tensor product model transformation in polytpic model based control. In: Ser. Automation and Control Engineering. CRC Press, Taylor & Frances Group. ISBN 9781138077782, CAT K34341

    Google Scholar 

  2. Baranyi P (2016) TP-model transformation based control design frameworks. In: Ser. Control Engineering. Springer, Berlin. ISBN 978-3-319-19605-3

    Google Scholar 

  3. Takarics B, Baranyi P, Varlaki P (2015) TP model-based robust stabilization of the 3 degrees-of-freedom aeroelastic wing section. Acta Polytechnica Hungarica 12(1):209–228

    Google Scholar 

  4. Takarics B, Baranyi P (2013) Robust control for the 3 dof aeroelastic wing via TP model representation. Acta Polytechnica Hungarica 6(5):77–97

    Google Scholar 

  5. Takarics B, Baranyi P (2015) Friction compensation in TP model form–aeroelastic wing as an example system. Acta Polytechnica Hungarica 12(4):127–145

    Google Scholar 

  6. Baranyi P, Takarics B (2014) Aeroelastic wing section control via relaxed tensor product model transformation framework. J Guid Control Dyn 37(5):1671–1678

    Article  Google Scholar 

  7. Baranyi P (2006) Tensor product model based control of two dimensional aeroelastic system. J Guid Control Dyn 29(2):391–400

    Article  Google Scholar 

  8. Takarics B, Baranyi P (2013) Tensor-product-model-based control of a three degrees-of-freedom aeroelastic model. J Guid Control Dyn 36(5):1527–1533

    Article  Google Scholar 

  9. Baranyi P, Petres Z et al (2006) Determination of different polytopic models of the prototypical aeroelastic wing section by TP model transformation. J Adv Comput Intell Intell Inform 10(4):486–493

    Article  Google Scholar 

  10. Baranyi P, Korondi H, Hashimotot P (2005) Global asymptotic stabilisation of the prototypical aeroelastic wing section via TP model transformation. Asian J Control 7(2):99–111

    Article  Google Scholar 

  11. Baranyi P (2006) Output feedback control of 2-d aeroelastic system. J Guid Control Dyn 29(3):762–767

    Article  Google Scholar 

  12. Baranyi P, Petres Z, Várkonyi P, Korondi P, Yam Y (2006) Determination of different polytopic models of the prototypical aeroelastic wing section by TP model transformation. J Adv Comput Intell Intell Inform 10(4):486–493

    Article  Google Scholar 

  13. Baranyi P (2014) The generalized TP model transformation for T-S fuzzy model manipulation and generalized stability verification. IEEE Trans Fuzzy Syst 22(4):934–948

    Article  Google Scholar 

  14. Baranyi P (2022) How to vary the input space of a T-S fuzzy model: a TP model transformation-based approach. IEEE Trans Fuzzy Syst 30(2):345–356

    Article  Google Scholar 

  15. Szollosi A, Baranyi P (2015) Influence of the tensor product model representation of qLPV models on the feasibility of linear matrix inequality. Asian J Control 18(4):1328–1342

    Article  MathSciNet  Google Scholar 

  16. Szollosi A, Baranyi P (2016) Improved control performance of the 3-dof aeroelastic wing section: a TP model based 2d parametric control performance optimization. Asian J Control 19(2):450–466

    Article  MathSciNet  Google Scholar 

  17. Szollosi A, Baranyi P (2017) Influence of the tensor product model representation of qLPV models on the feasibility of linear matrix inequality based stability analysis. Asian J Control 10(1):531–547

    Article  MathSciNet  Google Scholar 

  18. Takarics B, Szollosi A, Vanek B (2018) Tensor product type polytopic LPV modeling of aeroelastic aircraft. In: IEEE aerospace conference, pp 1–10

    Google Scholar 

  19. Baranyi P (2020) Extracting LPV and qLPV structures from state-space functions: a TP model transformation based framework. IEEE Trans Fuzzy Syst 28(3):499–509

    Article  Google Scholar 

  20. Baranyi P (2015) TP model transformation as a manipulation tool for qLPV analysis and design. Asian J Control 17(2):497–507

    Article  MathSciNet  Google Scholar 

  21. Várkonyi P, Tikk D, Korondi P, Baranyi P (2005) A new algorithm for RNO-INO type tensor product model representation. In: Proceedings of the 9th IEEE international conference on intelligent engineering systems, pp 263–266

    Google Scholar 

  22. Galambos P, Baranyi P (2014) T\(^\tau \) model transformation: a systematic modelling framework to handle internal time delays in control systems. Asian J Control 17(2):486–496

    Article  MathSciNet  Google Scholar 

  23. Tikk D, Baranyi P, Patton R, Tar J (2004) Approximation capability of TP model forms. Aust J Intell Inform Proces Syst 8:155–163

    Google Scholar 

  24. Scherer C, Weiland S (2000) Linear matrix inequalities in control. In: Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands. http://www.cs.ele.tue.nl/sweiland/lmi.htm

  25. Tanaka K, Wang H (2001) Fuzzy control systems design and analysis: a linear matrix inequality approach. Wiley, New York

    Book  Google Scholar 

  26. Takarics B, Vanek B (2020) Robust control design for the FLEXOP demonstrator aircraft via tensor product models. Asian J Control 23(3):1290–1300

    Article  Google Scholar 

  27. Baranyi P, Yam Y (1997) Singular value-based approximation with Takagi-Sugeno type fuzzy rule base. In: Proceedings of 6th international fuzzy systems conference, vol 1, pp 265–270

    Google Scholar 

  28. Kuti J, Galambos P, Baranyi P (2017) Minimal volume simplex (MVS) polytopic model generation and manipulation methodology for TP model transformation. Asian J Control 19(1):289–301

    Article  MathSciNet  Google Scholar 

  29. Varkonyi-Koczy A, Ruano A, Baranyi P, Takacs O (2001) Anytime information processing based on fuzzy and neural network models. In: 18th IEEE instrumentation and measurement technology conference, pp 1247–1252

    Google Scholar 

  30. Baranyi P, Korondi P, Tanaka K (2009) Parallel distributed compensation based stabilization of a 3-DOF RC helicopter: a tensor product transformation based approach. J Adv Comput Intell Intell Inform 13(1):25–34

    Article  Google Scholar 

  31. Baranyi P, Lei K, Yam Y (2000) Complexity reduction of singleton based neuro-fuzzy algorithm. In: IEEE international conference on systems, man and cybernetics, pp 2503–2508

    Google Scholar 

  32. Block JJ, Gilliat H (1997) Active control of an aeroelastic structure. AIAA Meeting Papers on Disc. American Institute of Aeronautics and Astronautics Inc, Reno, NV, pp 1–11

    Google Scholar 

  33. Block JJ, Strganac TW (1998) Applied active control for a nonlinear aeroelastic structure. J Guid Control Dyn 21:838–845 [Online]. Available: http://doi.aiaa.org/10.2514/2.4346

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Baranyi .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baranyi, P. (2023). Example II: TS Fuzzy Model Variants of the Aeroelastic Wing Section. In: Dual-Control-Design. Topics in Intelligent Engineering and Informatics, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-031-44575-0_13

Download citation

Publish with us

Policies and ethics