Skip to main content

Key Messages of the Book

  • Chapter
  • First Online:
Dual-Control-Design

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 17))

  • 39 Accesses

Abstract

This Chapter presents an overview of the TP/TS Fuzzy model transformation theories discussed in the book from mathematical, Fuzzy modelling and System design perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beltrami E (1873) Sulle funzioni bilineari. Giornale di Matematiche ad Uso degli Studenti Delle Universita 11(4):98–106

    Google Scholar 

  2. Jordan C (1874) Mémoire sur les formes bilinéaires. J de Mathématiques Pures et Appliquées 19(4):35–54

    Google Scholar 

  3. Jordan C (1874) Surla réduction des formes bilinéaires. Compt Rendus de l’Academie Sci 78(4):614–617

    Google Scholar 

  4. Stewart G (1993) On the early history of the singular value decomposition. SIAM Rev 35:551–556

    MathSciNet  Google Scholar 

  5. Tucker L (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31(3):279–311

    MathSciNet  Google Scholar 

  6. Kolda T, Bader B (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500

    MathSciNet  Google Scholar 

  7. Kruskal J (1989) Rank, decomposition, and uniqueness for 3-way and n-way arrays. Multiway Data Anal 52:7–18

    MathSciNet  Google Scholar 

  8. De Lathauwer L, De Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal 21(4):1253–1278

    MathSciNet  Google Scholar 

  9. Yam Y (1997) Fuzzy approximation via grid point sampling and singular value decomposition. IEEE Trans Syst Man Cybernet 27(6):933–951

    MathSciNet  Google Scholar 

  10. Yam Y, Baranyi P, Yang C (1999) Reduction of fuzzy rule base via singular value decomposition. IEEE Trans Fuzzy Syst 7(2):120–132

    Google Scholar 

  11. Baranyi P, Yam Y (1997) Singular value-based approximation with Takagi-Sugeno type fuzzy rule base. In: Proceedings of 6th international fuzzy systems conference, vol 1, pp 265–270

    Google Scholar 

  12. Baranyi P (2004) TP model transformation as a way to LMI-based controller design. IEEE Trans Ind Electron 51(2):387–400

    Google Scholar 

  13. Baranyi P (2014) The generalized TP model transformation for T-S fuzzy model manipulation and generalized stability verification. IEEE Trans Fuzzy Syst 22(4):934–948

    Google Scholar 

  14. Baranyi P, Szeidl L, Várlaki P, Yam Y (2006) Definition of the HOSVD based canonical form of polytopic dynamic models. In: Proceedings of the 2006 IEEE international conference on mechatronics, pp 660–665

    Google Scholar 

  15. Baranyi P, Szeidl L, Várlaki P (2006) Numerical reconstruction of the HOSVD based canonical form of polytopic dynamic models. In: Proceedings of the 10th international conference on intelligent engineering systems, pp 196–201

    Google Scholar 

  16. Szeidl L, Varlaki P (2009) HOSVD based canonical form for polytopic models of dynamic systems. J Adv Comput Intell Intell Inf 13(1):52–60

    Google Scholar 

  17. Baranyi P, Yam Y, Várlaki P (2017) Tensor product model transformation in polytpic model based control, ser. Automation and Control Engineering. CRC Press, Taylor & Frances Group, March 2017, ISBN 9781138077782 - CAT K34341

    Google Scholar 

  18. Várkonyi P, Tikk D, Korondi P, Baranyi P (2005) A new algorithm for RNO-INO type tensor product model representation. In Proceedings of the 9th IEEE international conference on intelligent engineering systems, pp 263–266 (2005)

    Google Scholar 

  19. Kuti J, Galambos P, Baranyi P (2017) Minimal volume simplex (MVS) polytopic model generation and manipulation methodology for TP model transformation. Asian J Cont 19(1):289–301

    MathSciNet  Google Scholar 

  20. Baranyi P, TP-Model transformation based control design frameworks, ser. Control Engineering. Springer book, July 2016, ISBN 978-3-319-19605-3

    Google Scholar 

  21. Baranyi P, Petres Z, VPL KP Yam Y, (2006) Determination of different polytopic models of the prototypical aeroelastic wing section by TP model transformation. J Adv Comput Intell Intell Inf 10(4):486–493

    Google Scholar 

  22. Baranyi P (2022) How to vary the input space of a T-S fuzzy model: a TP model transformation-based approach. IEEE Trans on Fuzzy Syst 30(2):345–356

    Google Scholar 

  23. Baranyi P (2018) Extension of the multi-TP model transformation to functions with different numbers of variables. Complexity (2018)

    Google Scholar 

  24. Tikk D, Baranyi P, Patton R (2008) Approximation properties of TP model forms and its consequences to TPDC design framework. Asian J Cont 9(3):221–231

    MathSciNet  Google Scholar 

  25. Tikk D, Baranyi P, Patton R (2002) Polytopic and TS models are nowhere dense in the approximation model space. In: IEEE International conference on systems, man and cybernetics, pp 150–153

    Google Scholar 

  26. Baranyi P, Yam Y, Varkonyi-Koczy A, Patton R (2003) SVD-based reduction to MISO TS models. IEEE Trans Ind Electron 50(1):232–242

    Google Scholar 

  27. Baranyi P, Korondi P, Patton R, Hashimoto H (2004) Trade-off between approximation accuracy and complexity for TS fuzzy models. Asian J Cont 6(1):21–33

    Google Scholar 

  28. Tikk D, Baranyi P, Patton R, Tar J (2004) Approximation capability of TP model forms. Australian J Intell Inf Proc Syst 8:155–163

    Google Scholar 

  29. Baranyi P, Lei K, Yam Y (2000) Complexity reduction of singleton based neuro-fuzzy algorithm. In: IEEE international conference on systems, man and cybernetics, pp 2503–2508

    Google Scholar 

  30. Petres Z, Baranyi P, Hashimoto H (2010) Approximation and complexity trade-off by TP model transformation in controller design: a case study of the TORA system. Asian J Cont 12(5):575–585

    MathSciNet  Google Scholar 

  31. Baranyi P, Koczy L (1996) A general and specialised solid cutting method for fuzzy rule interpolation. Université Paul Sabatier, J BUSEFAL. URA-CNRS, pp 13–22

    Google Scholar 

  32. Varkonyi-Koczy A, Ruano A, Baranyi P, Takacs O (2001) Anytime information processing based on fuzzy and neural network models. In: 18th IEEE instrumentation and measurement technology conference, pp 1247–1252 (2001)

    Google Scholar 

  33. Baranyi P, Yam D, Tikk D, Patton R (2003) Trade-off between approximation accuracy and complexity: TS controller design via HOSVD based complexity minimization. In: Casillas J, Cordón O, Herrera F, Magdalena L (eds) Studies in fuzziness and soft computing, vol 128. Springer-Verlag, Interpretability Issues in Fuzzy Modeling, pp 249–277

    Google Scholar 

  34. Wang Y, Hua C, Park P (2023) A generalized reciprocally convex inequality on stability and stabilization for t-s fuzzy systems with time-varying delay. IEEE Trans Fuzzy Syst 31(3):722–733

    Google Scholar 

  35. Yu Y, Li Z, Liu X, Hirota K, Chen X, Fernando T, Iu HHC (2019) A nested tensor product model transformation. IEEE Trans Fuzzy Syst 27(1):1–15

    Google Scholar 

  36. Ren Y, Li Q, Ding D-W, Xie X (2019) Dissipativity-preserving model reduction for takagi-sugeno fuzzy systems. IEEE Trans Fuzzy Syst 27(4):659–670

    Google Scholar 

  37. Xie X, Yang F, Wan L, Xia J, Shi K (2023) Enhanced local stabilization of constrained n-TS fuzzy systems with lighter computational burden. IEEE Trans Fuzzy Syst 31(3):1064–1070

    Google Scholar 

  38. Zhang H, Liu J (2021) Event-triggered fuzzy flight control of a two-degree-of-freedom helicopter system. IEEE Trans Fuzzy Syst 29(10):2949–2962

    MathSciNet  Google Scholar 

  39. Wang Y, Xu S, Ahn CK (2022) Finite-time composite antidisturbance control for t-s fuzzy nonhomogeneous markovian jump systems via asynchronous disturbance observer. IEEE Trans Fuzzy Syst 30(11):5051–5057

    Google Scholar 

  40. Chang X-H, Liu Q, Wang Y-M, Xiong J (2019) Fuzzy peak-to-peak filtering for networked nonlinear systems with multipath data packet dropouts. IEEE Trans Fuzzy Syst 27(3):436–446

    Google Scholar 

  41. Chen W, Fei Z, Zhao X, Basin MV (2022) Generic stability criteria for switched nonlinear systems with switching-signal-based lyapunov functions using takagi-sugeno fuzzy model. IEEE Trans Fuzzy Syst 30(10):4239–4248

    Google Scholar 

  42. Song J, Chang X-H (2023) Induced \(\cal{L} _\infty \) quantized sampled-data control for t-s fuzzy system with bandwidth constraint. IEEE Trans Fuzzy Syst 31(3):1031–1040

    Google Scholar 

  43. Ait Ladel A, Benzaouia A, Outbib R, Ouladsine M (2022) Integrated state/fault estimation and fault-tolerant control design for switched t-s fuzzy systems with sensor and actuator faults. IEEE Trans Fuzzy Syst 30(8):3211–3223

    Google Scholar 

  44. Kang Y, Yao L, Wang H (2022) Fault isolation and fault-tolerant control for takagi-sugeno fuzzy time-varying delay stochastic distribution systems. IEEE Trans Fuzzy Syst 30(4):1185–1195

    Google Scholar 

  45. Ji W, Qiu J, Karimi HR, Fu Y (2021) New results on fuzzy integral sliding mode control of nonlinear singularly perturbed systems. IEEE Trans Fuzzy Syst 29(7):2062–2067

    Google Scholar 

  46. Qiu Y, Hua C, Wang Y (2022) Nonfragile sampled-data control of t-s fuzzy systems with time delay. IEEE Trans Fuzzy Sys 30(8):3202–3210

    Google Scholar 

  47. Xie X, Wei C, Gu Z, Shi K (2022) Relaxed resilient fuzzy stabilization of discrete-time takagi-sugeno systems via a higher order time-variant balanced matrix method. IEEE Trans Fuzzy Syst 30(11):5044–5050

    Google Scholar 

  48. Xue Y, Zheng B-C, Yu X (2018) Robust sliding mode control for t-s fuzzy systems via quantized state feedback. IEEE Trans Fuzzy Syst 26(4):2261–2272

    Google Scholar 

  49. Sun H-Y, Han H-G, Sun J, Yang H-Y, Qiao J-F (2023) Security control of sampled-data t-s fuzzy systems subject to cyberattacks and successive packet losses. IEEE Trans Fuzzy Syst 31(4):1178–1188

    Google Scholar 

  50. Vu V-P, Wang W-J (2018) State/disturbance observer and controller synthesis for the t-s fuzzy system with an enlarged class of disturbances. IEEE Trans Fuzzy Syst 26(6):3645–3659

    Google Scholar 

  51. Ren Y, Ding D-W, Li Q, Xie X (2022) Static output feedback control for t-s fuzzy systems via a successive convex optimization algorithm. IEEE Trans Fuzzy Syst 30(10):4298–4309

    Google Scholar 

  52. Du H, Zhang N (2009) Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint. IEEE Trans Fuzzy Syst 17(2):343–356

    Google Scholar 

  53. Campos VCS, Souza FO, Tôrres LAB, Palhares RM (2013) New stability conditions based on piecewise fuzzy lyapunov functions and tensor product transformations. IEEE Trans Fuzzy Syst 21(4):748–760

    Google Scholar 

  54. Liu X, Yu Y, Li Z, Iu HHC, Fernando T (2017) An efficient algorithm for optimally reshaping the TP model transformation. IEEE Trans Circ Syst II: Express Briefs 64(10):1187–1191

    Google Scholar 

  55. Zhou Y, Liu J, Li Y, Gan C, Li H, Liu Y (2019) A gain scheduling wide-area damping controller for the efficient integration of photovoltaic plant. IEEE Trans Power Syst 34(3):1703–1715

    Google Scholar 

  56. Hajiloo A, Keshmiri M, Xie W-F, Wang T-T (2016) Robust online model predictive control for a constrained image-based visual servoing. IEEE Trans Ind Electron 63(4):2242–2250

    Google Scholar 

  57. Aslam MS, Tiwari P, Pandey HM, Band SS (2022) Observer-based control for a new stochastic maximum power point tracking for photovoltaic systems with networked control system. IEEE Trans Fuzzy Syst pp 1–14

    Google Scholar 

  58. Wang H, Kang Y, Yao L, Wang H, Gao Z (2021) Fault diagnosis and fault tolerant control for t-s fuzzy stochastic distribution systems subject to sensor and actuator faults. IEEE Trans Fuzzy Syst 29(11):3561–3569

    Google Scholar 

  59. Sabbghian-Bidgoli F, Farrokhi M (2022) Polynomial fuzzy observer-based integrated fault estimation and fault-tolerant control with uncertainty and disturbance. IEEE Trans Fuzzy Syst 30(3):741–754

    Google Scholar 

  60. Hu J, Li X, Xu Z, Pan H (2022) Co-design of quantized dynamic output feedback MPC for Takagi-Sugeno model. IEEE Trans Ind Inf 1–11

    Google Scholar 

  61. Hu J, Lv X, Pan H, Zhang M (2022) Handling the constraints in min-max MPC. IEEE Trans Automat Sci Eng 1–9

    Google Scholar 

  62. Chen B-S, Tsai Y-Y, Lee M-Y (2021) Robust decentralized formation tracking control for stochastic large-scale biped robot team system under external disturbance and communication requirements. IEEE Trans Cont Netw Syst 8(2):654–666

    MathSciNet  Google Scholar 

  63. Tiko S, Mesquine F (2023) Constrained control for a class of TS fuzzy systems. IEEE Trans Fuzzy Syst 31(1):348–353

    Google Scholar 

  64. Ijaz S, Yan L, Hamayun MT, Baig WM, Shi C (2018) An adaptive LPV integral sliding mode FTC of dissimilar redundant actuation system for civil aircraft. IEEE Access 6:65960–65973

    Google Scholar 

  65. Zaqueros-Martinez J, Rodriguez-Gomez G, Tlelo-Cuautle E, Orihuela-Espina F (2023) Fuzzy synchronization of chaotic systems with hidden attractors. Entropy 25(3):495–65973

    Google Scholar 

  66. Zhang J, Xu X, Yang L, Yang X (2019) LPV model-based multivariable indirect adaptive control of damaged asymmetric aircraft. Aerospace Eng 32(6):1–16

    Google Scholar 

  67. Ma F, Li J, Wu L (2022) Yuan D (2022) Tensor product based polytopic lpv system design of a 6-dof multi-strut platform. Int J Cont Automat Syst 20:137–146

    Google Scholar 

  68. Huang Y, Sun C, Qian C, Wang L (2015) Linear parameter varying switching attitude control for a near space hypersonic vehicle with parametric uncertainties. Int J Syst Sci 46(16):3019–3031. [Online]. Available: https://doi.org/10.1080/00207721.2014.886743

  69. Nie L, Cai B, Zhu Y, Yang J, Zhang L (2021) Switched linear parameter-varying tracking control for quadrotors with large attitude angles and time-varying inertia. Opt Cont Appl Methods 42:1320–1336

    MathSciNet  Google Scholar 

  70. Chang F, Shi B, Li X, Zhao G, Huan S (2021) Local extrema refinement-based tensor product model transformation controller with problem independent sampling methods. Asian J Cont 23(3):1352–1366

    Google Scholar 

  71. Hedrea E, Precup R, Petriu E, Bojan-Dragos C, Hedrea C (2021) Tensor product-based model transformation approach to cart position modeling and control in pendulum-cart systems. Asian J Cont 23(3):1238–1248

    Google Scholar 

  72. Kuczmann M (2020) Study of tensor product model alternatives. Asian J Cont 23(3):1249–1261

    MathSciNet  Google Scholar 

  73. Varlaki P, Palkovics L, Rövid A (2020) On modeling and identification of empirical partially intelligible white noise processes. Asian J Cont 23(3):1262–1279

    Google Scholar 

  74. Németh Z, Kuczmann M (2020) Tensor product transformation-based modeling of an induction machine. Asian J Cont 23(3):1280–1289

    Google Scholar 

  75. Takarics B, Vanek B (2020) Robust control design for the FLEXOP demonstrator aircraft via tensor product models. Asian J Cont 23(3):1290–1300

    Google Scholar 

  76. Csapo A (2020) Cyclical inverse interpolation: an approach for the inverse interpolation of black-box models using tensor product representations. Asian J Cont 23(3):1301–1312

    MathSciNet  Google Scholar 

  77. Hedrea E, Precup R, Roman R, Petriu E (2020) Tensor product-based model transformation approach to tower crane systems modeling. Asian J Cont 23(3):1313–1323

    Google Scholar 

  78. Ile S, Matusko J, Lazar M (2020) Piece-wise ellipsoidal set-based model predictive control of linear parameter varying systems with application to a tower crane. Asian J Cont 23(3):1324–1339

    MathSciNet  Google Scholar 

  79. Boonyaprapasorn A, Kuntanapreeda S, Ngiamsunthorn P, Pengwang E, Sangpet T (2020) Tensor product model transformation-based control for fractional-order biological pest control systems. Asian J Cont 23(3):1340–1351

    Google Scholar 

  80. Kuntanapreeda S (2014) Tensor product model transformation based control and synchronization of a class of fractional-order chaotic systems. Asian J Cont 17(2):371–380

    MathSciNet  Google Scholar 

  81. Precup E, Petriu E, Rădac M, Preitl S, Fedorovici L, Dragoş C (2014) Cascade control system-based cost effective combination of tensor product model transformation and fuzzy control. Asian J Cont 17(2):381–391

    MathSciNet  Google Scholar 

  82. Campos V, Tôrres L, Palhares R (2014) Revisiting the TP model transformation: interpolation and rule reduction. Asian J Cont 17(2):392–401

    MathSciNet  Google Scholar 

  83. Wang T, Xie W, Liu G, Zhao Y (2014) Quasi-min-max model predictive control for image-based visual servoing with tensor product model transformation. Asian J Cont 17(2):402–416

    MathSciNet  Google Scholar 

  84. Chumalee S, Whidborne J (2014) Gain-scheduled \(h_\infty \) control for tensor product type polytopic plants. Asian J Cont 17(2):417–431

    MathSciNet  Google Scholar 

  85. Kuti J, Galambos P, Miklós A (2014) Output feedback control of a dual-excenter vibration actuator via qLPV model and tp model transformation. Asian J Cont 17(2):432–442

    MathSciNet  Google Scholar 

  86. Matuško J, Ileš S, Kolonić F, Lešić V (2014) Control of 3d tower crane based on tensor product model transformation with neural friction compensation. Asian J Cont 17(2):443–458

    MathSciNet  Google Scholar 

  87. Rövid A, Szeidl L, Várlaki P (2014) Integral operators in relation to the HOSVD-based canonical form. Asian J Cont 17(2):459–466

    MathSciNet  Google Scholar 

  88. Pan J, Lu L (2014) TP model transformation via sequentially truncated higher-order singular value decomposition. Asian J Cont 17(2):467–475

    MathSciNet  Google Scholar 

  89. Hajiloo A, Xie W (2014) The stochastic robust model predictive control of shimmy vibration in aircraft landing gears. Asian J Cont 17(2):476–485

    MathSciNet  Google Scholar 

  90. Qin W, Liu J, Liu G, He B, Wang L (2014) Robust parameter dependent receding horizon \(h_\infty \) control of flexible air-breathing hypersonic vehicles with input constraints. Asian J Cont 17(2):508–522

    MathSciNet  Google Scholar 

  91. Huang Y, Sun C, Qian C (2014) Linear parameter varying switching attitude tracking control for a near space hypersonic vehicle via multiple lyapunov functions. Asian J Cont 17(2):523–534

    MathSciNet  Google Scholar 

  92. Boonyaprapasorn A, Kuntanapreeda S, Sangpet T, Ngiamsunthorn P, Pengwang E (2020) Biological pest control based on tensor product transformation method. Acta Polytechnica Hungarica 17(6):25–40

    Google Scholar 

  93. Campos V, Braga M, Frezzatto L (2020) Analytical upper bound for the error on the discretization of uncertain linear systems by using the tensor product model transformation. Acta Polytechnica Hungarica 17(6):61–74

    Google Scholar 

  94. Pereira A, Vianna L, Keles N, Campos V (2018) Tensor product model transformation simplification of Takagi-Sugeno control and estimation laws - an application to a thermoelectric controlled chamber. Acta Polytechnica Hungarica 15(3):13–29

    Google Scholar 

  95. Campos VL, Braga VCS, M (2018) A tensor product model transformation approach to the discretization of uncertain linear systems. Acta Polytechnica Hungarica 15(3):31–43

    Google Scholar 

  96. Kan Y, He Z, Zhao J (2018) Tensor product model-based control design with relaxed stability conditions for perching maneuvers. Acta Polytech Hungar 15(3):45–61

    Google Scholar 

  97. Gong H, Sun H, Wang B, Yu Y, Li Z, Liao X, Liu X (2018) Tensor product model-based control for space-craft with fuel slosh dynamics. Acta Polytech Hungar 15(3):63–80

    Google Scholar 

  98. Du H, Yan J, Fan F (2018) A state and input constrained control method for air-breathing hypersonic vehicles. Acta Polytech Hungar 15(3):81–99

    Google Scholar 

  99. Kovács L, Eigner G (2018) Tensor product model transformation-based parallel distributed control of tumor growth. Acta Polytech Hungar 15(3):101–123

    Google Scholar 

  100. Hedrea E, Precup R, Bojan-Dragos C (2019) Results on tensor product-based model transformation of magnetic levitation systems. Acta Polytech Hungar 16(9):93–111

    Google Scholar 

  101. Korondi P (2006) Tensor product model transformation-based sliding surface design. Acta Polytechnica Hungarica 3(4):23–35

    Google Scholar 

  102. FKolonic F, Poljugan A, Petrović I (2006) Tensor product model transformation-based controller design for gantry crane control system–an application approach. Acta Polytech Hungar 3:95–112

    Google Scholar 

  103. Zhao G, Li H, Song Z (2016) Tensor product model transformation based decoupled terminal sliding mode control. Int J Syst Sci 47(8):1791–1803

    MathSciNet  Google Scholar 

  104. Zhao G, Sun K, Li H (2013) Tensor product model transformation based adaptive integral-sliding mode controller: equivalent control method. The Sci World J

    Google Scholar 

  105. Ma F, Li J, Wu L (2022) Tensor product model HOSVD based polytopic LPV controller for suspension anti-vibration system. J Vib Cont 29(1–2):5–20

    MathSciNet  Google Scholar 

  106. Xing H, Wei J, Caisheng J (2021) Robust controller designing for an air-breathing hypersonic vehicle with an HOSVD-based LPV model. Int J Aeros Eng pp 1–12

    Google Scholar 

  107. Korondi P, Budai C, Hashimoto H, Harashima F (2015) Tensor product model transformation based sliding mode design for LPV systems. Springer International Publishing, pp 277–298

    Google Scholar 

  108. Carlos A, Antonio S (2007) Relaxed LMI conditions for closed-loop fuzzy systems with tensor-product structure. Eng Appl Artif Intell 20(8):1036–1046

    Google Scholar 

  109. Precup R, Dragos C, Preitl S, Radac M, Petriu E (2012) Novel tensor product models for automatic transmission system control. IEEE Syst J 6(3):488–498

    Google Scholar 

  110. Liu X, Xin X, Li Z, Chen Z (2017) Near optimal control based on the tensor-product technique. IEEE Trans Circ Syst II: Express Briefs 64(5):560–564

    Google Scholar 

  111. Kuti J, GP, Baranyi P, (2017) Control analysis and synthesis through polytopic tensor product model: a general concept. IFAC-PapersOnLine 50(1):6558–6563

    Google Scholar 

  112. Baranyi P (2015) TP model transformation as a manipulation tool for qLPV analysis and design. Asian J Cont 17(2):497–507

    MathSciNet  Google Scholar 

  113. Galambos P, Baranyi P (2014) TP\(^\tau \) model transformation: a systematic modelling framework to handle internal time delays in control systems. Asian J Cont 17(2):486–496

    MathSciNet  Google Scholar 

  114. Pereire AMF, Vianna LMS, Keles NA, Campos VCS (2018) Tensor product model transformation simplification of Takagi-Sugeno control and estimation laws–an application to a thermoelectric controlled chamber. Acta Polytech Hungar 15(3):13–29

    Google Scholar 

  115. Takarics B, Baranyi P, Varlaki P (2015) TP model-based robust stabilization of the 3 degrees-of-freedom aeroelastic wing section. Acta Polytech Hungar 12(1):209–228

    Google Scholar 

  116. Takarics B, Baranyi P (2015) Friction compensation in TP model form–aeroelastic wing as an example system. Acta Polytech Hungar 12(4):127–145

    Google Scholar 

  117. Galambos P, Baranyi P, Arz G (2014) Tensor product model transformation-based control design for force reflecting tele-grasping under time delay. Proceedings of the Institution of Mechanical Engineers, Part C: J Mech Eng Sci 228(4):765–777

    Google Scholar 

  118. Takarics B, Baranyi P (2013) Tensor-product-model-based control of a three degrees-of-freedom aeroelastic model. J Guidance, Cont Dynam 36(5):1527–1533

    Google Scholar 

  119. Galambos P, Baranyi P (2013) Representing the model of impedance controlled robot interaction with feedback delay in polytopic lpv form: Tp model transformation based approach. Acta Poltech Hungar 10(1):139–157

    Google Scholar 

  120. Takarics B, Baranyi P (2013) Robust control for the 3 dof aeroelastic wing via TP model representation. Acta Polytech Hungar 6(5):77–97

    Google Scholar 

  121. Galambos P, Baranyi P, KP (2010) Extended TP model transformation for polytopic representation of impedance model with feedback delay. WSEAS Trans Syst Cont 5(9):701–710

    Google Scholar 

  122. Grof P, Baranyi P, KP, (2010) Convex hull manipulation based control performance optimisation. WSEAS Trans Syst Cont 5(8):691–700

    Google Scholar 

  123. Baranyi P, Takarics B (2014) Aeroelastic wing section control via relaxed tensor product model transformation framework. J Guid Cont Dynam 37(5):1671–1678

    Google Scholar 

  124. Baranyi P (2006) Tensor product model based control of two dimensional aeroelastic system. J Guid Cont Dynam 29(2):391–400

    Google Scholar 

  125. Baranyi P (2006) Output feedback control of 2-d aeroelastic system. J Guid Cont Dynam 29(3):762–767

    Google Scholar 

  126. Nagy S, Petres Z, Baranyi P, Hashimoto H (2009) Computational relaxed TP model transformation: restricting the computation to subspaces of the dynamic model. Asian J Cont 11(5):461–475

    MathSciNet  Google Scholar 

  127. Szabo Z, Gaspar P, Nagy S, Baranyi P (2008) TP model transformation for control-oriented qLPV modeling. Australian J Intell Inf Proc Syst 10(2):36–53

    Google Scholar 

  128. Matszangosz K, Baranyi P, Nagy S (2008) Nonlinear control of a parallel type double inverted pendulum system via TP decomposition and LMI control design. Austral J Intell Inf Proc Syst 10(1):28–49

    Google Scholar 

  129. Baranyi P, Petres Z, Varlkai P, Michelberger P (2006) Observer and control law design to the TORA system via TPDC framework. WSEAS Trans Syst Cont 5(1):156–163

    Google Scholar 

  130. Baranyi P, Yam Y (2006) Case study of the TP-model transformation in the control of a complex dynamic model with structural nonlinearity. IEEE Trans Ind Electron 53(3):895–904

    Google Scholar 

  131. Baranyi P, Varkonyi-Koczy A (2005) TP transformation based dynamic system modeling for nonlinear control. IEEE Trans Inst Measur 54(6):2191–2203

    Google Scholar 

  132. Baranyi P, Varkonyi-Koczy A, Yam Y, Patton R (2005) Adaptation of TS fuzzy models without complexity expansion: HOSVD-based approach. IEEE Trans Instr Measur 54(1):52–60

    Google Scholar 

  133. Baranyi P, Korondi H, Hashimotot P (2005) Global asymptotic stabilisation of the prototypical aeroelastic wing section via TP model transformation. Asian J Cont 7(2):99–111

    Google Scholar 

  134. Baranyi P, Petres ZK, Yam Y, Hashomoto H (2007) Complexity relaxation of the tensor product model transformation for higher dimensional problems. Asian J Cont 9(2):195–200

    MathSciNet  Google Scholar 

  135. Petres Z, Baranyi P, Korondi P, Hashimoto H (2007) Trajectory tracking by TP model transformation: case study of a benchmark problem. IEEE Trans Ind Electron 54(3):1654–1663

    Google Scholar 

  136. Baranyi P, Tikk D, Yam Y, Patton R (2003) From differential equations to PDC controller design via numerical transformation. Comput Ind 51:281–297

    Google Scholar 

  137. Baranyi P, Varkonyi-Koczy A (2002) Adaptation of SVD-based fuzzy reduction via minimal expansion. IEEE Trans Instr Measur 51(2):222–226

    Google Scholar 

  138. Baranyi P, Yam Y, Varkonyi-Koczy A, Patton R, Michelberger P, Sugiyama M (2002) SVD-based complexity reduction to TS fuzzy models. IEEE Trans Ind Electron 49(2):433–443

    Google Scholar 

  139. Baranyi P, Yam Y, Yang C, Varlaki P, Michelberger P (2001) Inference algorithm independent SVD fuzzy rule base complexity reduction. Int J Adv Comput Intell 5(1):22–30

    Google Scholar 

  140. Baranyi P, Yam Y, Varlaki P, Michelberger P (2000) Singular value decomposition of linguistically defined relations. Int J Fuzzy Syst 2(2):108–116

    MathSciNet  Google Scholar 

  141. Lei K, Baranyi P, Yam Y (2000) Complexity minimalisation of non-singleton based fuzzy-neural network. Int J Adv Comput Intell 4(4):1–7

    Google Scholar 

  142. Baranyi P, Korondi P, Tanaka K (2009) Parallel distributed compensation based stabilization of a 3-DOF RC helicopter: a tensor product transformation based approach. J Adv Comput Intell Intell Inf 13(1):25–34

    Google Scholar 

  143. Baranyi P (2020) Extracting LPV and qLPV structures from state-space functions: a TP model transformation based framework. IEEE Trans Fuzzy Syst 28(3):499–509

    Google Scholar 

  144. Szollosi A, Baranyi P (2015) Influence of the tensor product model representation of qLPV models on the feasibility of linear matrix inequality. Asian J Cont 18(4):1328–1342

    MathSciNet  Google Scholar 

  145. Szollosi A, Baranyi P (2016) Improved control performance of the 3-dof aeroelastic wing section: a TP model based 2d parametric control performance optimization. Asian J Cont 19(2):450–466

    MathSciNet  Google Scholar 

  146. Szollosi A, Baranyi P (2017) Influence of the tensor product model representation of qLPV models on the feasibility of linear matrix inequality based stability analysis. Asian J Cont 10(1):531–547

    MathSciNet  Google Scholar 

  147. Tanaka K, Wang H (2001) Fuzzy control systems design and analysis: a linear matrix inequality approach. John Wiley and Sons Inc, U.S.A

    Google Scholar 

  148. Scherer C, Weiland S (2000) Linear matrix inequalities in control. Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands. http://www.cs.ele.tue.nl/sweiland/lmi.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Baranyi .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baranyi, P. (2023). Key Messages of the Book. In: Dual-Control-Design. Topics in Intelligent Engineering and Informatics, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-031-44575-0_1

Download citation

Publish with us

Policies and ethics