Skip to main content

HoloPOCUS: Portable Mixed-Reality 3D Ultrasound Tracking, Reconstruction and Overlay

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2023)

Abstract

Ultrasound (US) imaging provides a safe and accessible solution to procedural guidance and diagnostic imaging. The effective usage of conventional 2D US for interventional guidance requires extensive experience to project the image plane onto the patient, and the interpretation of images in diagnostics suffers from high intra- and inter-user variability. 3D US reconstruction allows for more consistent diagnosis and interpretation, but existing solutions are limited in terms of equipment and applicability in real-time navigation. To address these issues, we propose HoloPOCUS—a mixed reality US system (MR-US) that overlays rich US information onto the user’s vision in a point-of-care setting. HoloPOCUS extends existing MR-US methods beyond placing a US plane in the user’s vision to include a 3D reconstruction and projection that can aid in procedural guidance using conventional probes. We validated a tracking pipeline that demonstrates higher accuracy compared to existing MR-US works. Furthermore, user studies conducted via a phantom task showed significant improvements in navigation duration when using our proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caraiani, C., Petresc, B., Dong, Y., Dietrich, C.F.: Contraindications and adverse effects in abdominal imaging. Med. Ultrason. 21, 456–463 (2019)

    Article  Google Scholar 

  2. Lentz, B., Fong, T., Rhyne, R., Risko, N.: A systematic review of the cost-effectiveness of ultrasound in emergency care settings. Ultrasound J. 13, 1–9 (2021)

    Article  Google Scholar 

  3. Salonen, R., Haapanen, A., Salonen, J.T.: Measurement of intima-media thickness of common carotid arteries with high-resolution B-mode ultrasonography: Inter- and intra-observer variability. Ultrasound Med. Biol. 17, 225–230 (1991)

    Article  Google Scholar 

  4. Yoon, H.K., et al.: Effects of practitioner’s experience on the clinical performance of ultrasound-guided central venous catheterization: a randomized trial. Sci. Rep. 11, 1–8 (2021)

    Google Scholar 

  5. Gonçalves, L.F., et al.: Applications of 2D matrix array for 3D and 4D examination of the fetus: a pictorial essay. J. Ultrasound Med. 25, 745 (2006)

    Article  Google Scholar 

  6. Daoud, M.I., Alshalalfah, A.L., Awwad, F., Al-Najar, M.: Freehand 3D ultrasound imaging system using electromagnetic tracking. In: 2015 International Conference on Open Source Software Computing, OSSCOM 2015 (2016)

    Google Scholar 

  7. Kim, T., et al.: Versatile low-cost volumetric 3D ultrasound imaging using gimbal-assisted distance sensors and an inertial measurement unit. Sens. (Basel). 20, 1–15 (2020)

    Google Scholar 

  8. Prevost, R., et al.: 3D freehand ultrasound without external tracking using deep learning. Med Image Anal. 48, 187–202 (2018)

    Article  Google Scholar 

  9. Krönke, M., et al.: Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry. PLoS ONE 17, e0268550 (2022)

    Article  Google Scholar 

  10. Fraser, J.F., Schwartz, T.H., Kaplitt, M.G.: BrainLab image guided system. In: Textbook of Stereotactic and Functional Neurosurgery, pp. 567–581 (2009)

    Google Scholar 

  11. Glas, H.H., Kraeima, J., van Ooijen, P.M.A., Spijkervet, F.K.L., Yu, L., Witjes, M.J.H.: Augmented reality visualization for image-guided surgery: a validation study using a three-dimensional printed phantom. J. Oral Maxillofac. Surg. 79(1943), e1-1943.e10 (2021)

    Google Scholar 

  12. Ameri, G., et al.: Development and evaluation of an augmented reality ultrasound guidance system for spinal anesthesia: preliminary results. Ultrasound Med Biol. 45, 2736–2746 (2019)

    Article  Google Scholar 

  13. Rosenthal, M., et al.: Augmented reality guidance for needle biopsies: an initial randomized, controlled trial in phantoms. Med. Image Anal. 6, 313–320 (2002)

    Article  Google Scholar 

  14. Nguyen, T., Plishker, W., Matisoff, A., Sharma, K., Shekhar, R.: HoloUS: augmented reality visualization of live ultrasound images using HoloLens for ultrasound-guided procedures. Int. J. Comput. Assist. Radiol. Surg. 17, 385–391 (2022)

    Article  Google Scholar 

  15. von Haxthausen, F., Moreta-Martinez, R., Pose Díez de la Lastra, A., Pascau, J., Ernst, F.: UltrARsound: in situ visualization of live ultrasound images using HoloLens 2. Int. J. Comput. Assist. Radiol. Surg. 17, 2081 (2022)

    Google Scholar 

  16. Cattari, N., Condino, S., Cutolo, F., Ghilli, M., Ferrari, M., Ferrari, V.: Wearable AR and 3D ultrasound: towards a novel way to guide surgical dissections. IEEE Access. 9, 156746–156757 (2021)

    Article  Google Scholar 

  17. Ungureanu, D., et al.: HoloLens 2 research mode as a tool for computer vision research (2020)

    Google Scholar 

  18. Dibene, J.C., Dunn, E.: HoloLens 2 sensor streaming (2022)

    Google Scholar 

  19. Tölgyessy, M., Dekan, M., Chovanec, Ľ, Hubinský, P.: Evaluation of the azure kinect and its comparison to kinect V1 and kinect V2. Sens. (Basel). 21, 1–25 (2021)

    Google Scholar 

  20. Hübner, P., Clintworth, K., Liu, Q., Weinmann, M., Wursthorn, S.: Evaluation of HoloLens tracking and depth sensing for indoor mapping applications. Sensors 20, 1021 (2020)

    Article  Google Scholar 

  21. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 47, 2280–2292 (2014)

    Article  Google Scholar 

  22. Kedilioglu, O., Bocco, T.M., Landesberger, M., Rizzo, A., Franke, J.: ArUcoE: enhanced ArUco marker. In: International Conference on Control, Automation and Systems, vol. 2021-October, pp. 878–881 (2021)

    Google Scholar 

  23. Wang, Y., Zheng, Z., Su, Z., Yang, G., Wang, Z., Luo, Y.: An improved ArUco marker for monocular vision ranging. In: Proceedings of the 32nd Chinese Control and Decision Conference, CCDC 2020, pp. 2915–2919 (2020)

    Google Scholar 

  24. Rijlaarsdam, D.D.W., Zwick, M., Kuiper, J.M.: A novel encoding element for robust pose estimation using planar fiducials. Front. Robot. AI 9, 227 (2022)

    Article  Google Scholar 

  25. Zhang, Z., Hu, Y., Yu, G., Dai, J.: DeepTag: a general framework for fiducial marker design and detection. IEEE Trans. Pattern Anal. Mach. Intell. 45, 2931–2944 (2021)

    Google Scholar 

  26. Duda, A.: Accurate detection and localization of checkerboard corners for calibration (2018)

    Google Scholar 

  27. West, J.B., Fitzpatrick, J.M., Toms, S.A., Maurer, C.R., Maciunas, R.J.: Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48, 810–817 (2001)

    Google Scholar 

  28. Fitzpatrick, J.M.: Fiducial registration error and target registration error are uncorrelated. In: Medical Imaging 2009: Visualization, Image-Guided Procedures, and Modeling, vol. 7261, p. 726102 (2009)

    Google Scholar 

  29. Gsaxner, C., Pepe, A., Schmalstieg, D., Li, J., Egger, J.: Inside-out instrument tracking for surgical navigation in augmented reality. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, p. 11 (2021)

    Google Scholar 

  30. Earle, M., Portu, G.D., Devos, E.: Agar ultrasound phantoms for low-cost training without refrigeration. Afr. J. Emerg. Med. 6, 18–23 (2016)

    Article  Google Scholar 

  31. Weerakkody, Y., Morgan, M.: ATA guidelines for assessment of thyroid nodules. Radiopaedia.org (2016)

    Google Scholar 

  32. Lindseth, F., et al.: Ultrasound-based guidance and therapy. Advancements and Breakthroughs in Ultrasound Imaging (2013)

    Google Scholar 

  33. Azizi, G., et al.: 3-D ultrasound and thyroid cancer diagnosis: a prospective study. Ultrasound Med. Biol. 47, 1299–1309 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eng Tat Khoo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 192 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ng, K.W. et al. (2023). HoloPOCUS: Portable Mixed-Reality 3D Ultrasound Tracking, Reconstruction and Overlay. In: Kainz, B., Noble, A., Schnabel, J., Khanal, B., Müller, J.P., Day, T. (eds) Simplifying Medical Ultrasound. ASMUS 2023. Lecture Notes in Computer Science, vol 14337. Springer, Cham. https://doi.org/10.1007/978-3-031-44521-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44521-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44520-0

  • Online ISBN: 978-3-031-44521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics