Skip to main content

Fast and Robust Constrained Optimization via Evolutionary and Quadratic Programming

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14286))

Included in the following conference series:

  • 502 Accesses

Abstract

Many efficient and effective approaches have been proposed in the evolutionary computation literature for solving constrained optimization problems. Most of the approaches assume that both the objective function and the constraints are black-box functions, while a few of them can take advantage of the gradient information. On the other hand, when the gradient information is available, the most versatile approaches are arguably the ones coming from the numerical optimization literature. Perhaps the most popular methods in this field are sequential quadratic programming and interior point. Despite their success, those methods require accurate gradients and usually require a well-shaped initialization to work as expected. In the paper at hand, a novel hybrid method, named UPSO-QP, is presented that is based on particle swarm optimization and borrows ideas from the numerical optimization literature and sequential quadratic programming approaches. The proposed method is evaluated on numerous constrained optimization tasks from simple low dimensional problems to high dimensional realistic trajectory optimization scenarios, and showcase that is able to outperform other evolutionary algorithms both in terms of convergence speed as well as performance, while also being robust to noisy gradients and bad initialization.

This work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “3rd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers” (Project Acronym: NOSALRO, Project Number: 7541).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is available at https://github.com/NOSALRO/algevo.

  2. 2.

    We use the implementation provided by scipy.

  3. 3.

    We use the implementation provided by the Ipopt library.

References

  1. Bambade, A., et al.: PROX-QP: yet another quadratic programming solver for robotics and beyond. In: RSS 2022-Robotics: Science and Systems (2022)

    Google Scholar 

  2. Beck, A., Hallak, N.: The regularized feasible directions method for nonconvex optimization. Oper. Res. Lett. 50(5), 517–523 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cantú, V.H., et al.: Constraint-handling techniques within differential evolution for solving process engineering problems. Appl. Soft Comput. 108, 107442 (2021)

    Article  Google Scholar 

  4. Chatzilygeroudis, K., Cully, A., Vassiliades, V., Mouret, J.-B.: Quality-diversity optimization: a novel branch of stochastic optimization. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds.) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. SOIA, vol. 170, pp. 109–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66515-9_4

    Chapter  MATH  Google Scholar 

  5. Chootinan, P., et al.: Constraint handling in genetic algorithms using a gradient-based repair method. Comput. Oper. Res. 33(8), 2263–2281 (2006)

    Article  MATH  Google Scholar 

  6. D’Angelo, G., Palmieri, F.: GGA: a modified genetic algorithm with gradient-based local search for solving constrained optimization problems. Inf. Sci. 547, 136–162 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elsayed, S.M., Sarker, R.A., Mezura-Montes, E.: Particle swarm optimizer for constrained optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp. 2703–2711. IEEE (2013)

    Google Scholar 

  8. Elster, C., Neumaier, A.: A method of trust region type for minimizing noisy functions. Computing 58, 31–46 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms, vol. 455. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53032-0

  10. Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Control. Dyn. 10(4), 338–342 (1987)

    Article  MATH  Google Scholar 

  11. Himmelblau, D.M., et al.: Applied Nonlinear Programming. McGraw-Hill, New York (2018)

    MATH  Google Scholar 

  12. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2013)

    Article  Google Scholar 

  13. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9, 303–317 (2005)

    Article  Google Scholar 

  14. Kraft, D.: A software package for sequential quadratic programming. German Research and Testing Institute for Aerospace (1988)

    Google Scholar 

  15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

    Book  MATH  Google Scholar 

  16. Murray, D., Yakowitz, S.: Differential dynamic programming and newton’s method for discrete optimal control problems. J. Optim. Theory Appl. 43(3), 395–414 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn., pp. 497–528. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  18. Norkin, V.I.: Generalized gradients in dynamic optimization, optimal control, and machine learning problems. Cybern. Syst. Anal. 56(2), 243–258 (2020). https://doi.org/10.1007/s10559-020-00240-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method for constrained optimization problems. In: Intelligent technologies-theory and application: New trends in intelligent technologies, vol. 76, pp. 214–220. IOS Press (2002)

    Google Scholar 

  20. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 1, 235–306 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for solving constrained engineering optimization problems. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 582–591. Springer, Heidelberg (2005). https://doi.org/10.1007/11539902_71

    Chapter  Google Scholar 

  22. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization and Intelligence: Advances and Applications. Information Science Publishing (2010)

    Google Scholar 

  23. Rao, V.G., Bernstein, D.S.: Naive control of the double integrator. IEEE Control Syst. Mag. 21(5), 86–97 (2001)

    Article  Google Scholar 

  24. Sun, Y., et al.: A particle swarm optimization algorithm based on an improved deb criterion for constrained optimization problems. PeerJ Comput. Sci. 8, e1178 (2022)

    Article  Google Scholar 

  25. Tsutsui, S., Ghosh, A.: Genetic algorithms with a robust solution searching scheme. IEEE Trans. Evol. Comput. 1, 201–208 (1997)

    Article  Google Scholar 

  26. Von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37(1), 357–373 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wensing, P.M., et al.: Optimization-based control for dynamic legged robots. arXiv:2211.11644 (2022)

  29. Winkler, A.W., Bellicoso, C.D., Hutter, M., Buchli, J.: Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robot. Autom. Lett. 3(3), 1560–1567 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos I. Chatzilygeroudis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chatzilygeroudis, K.I., Vrahatis, M.N. (2023). Fast and Robust Constrained Optimization via Evolutionary and Quadratic Programming. In: Sellmann, M., Tierney, K. (eds) Learning and Intelligent Optimization. LION 2023. Lecture Notes in Computer Science, vol 14286. Springer, Cham. https://doi.org/10.1007/978-3-031-44505-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44505-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44504-0

  • Online ISBN: 978-3-031-44505-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics