Skip to main content

GPU for Monte Carlo Search

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14286))

Included in the following conference series:

Abstract

Monte Carlo Search algorithms can give excellent results for some combinatorial optimization problems and for some games. They can be parallelized efficiently on high-end CPU servers. Nested Monte Carlo Search is an algorithm that parallelizes well. We take advantage of this property to obtain large speedups running it on low cost GPUs. The combinatorial optimization problem we use for the experiments is the Snake-in-the-Box. It is a graph theory problem for which Nested Monte Carlo Search previously improved lower bounds. It has applications in electrical engineering, coding theory, and computer network topologies. Using a low cost GPU, we obtain speedups as high as 420 compared to a single CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouzy, B.: Monte-Carlo fork search for cooperative path-finding. In: Computer Games Workshop at IJCAI, pp. 1–15 (2013)

    Google Scholar 

  2. Bouzy, B.: Burnt pancake problem: new lower bounds on the diameter and new experimental optimality ratios. In: SOCS, pp. 119–120 (2016)

    Google Scholar 

  3. Brodtkorb, A., Hagen, T., Schulz, C., Hasle, G.: GPU computing in discrete optimization. Part I: Introduction to the GPU. EURO J. Transp. Logist. 2 (2013). https://doi.org/10.1007/s13676-013-0025-1

  4. Browne, C., et al.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012). https://doi.org/10.1109/TCIAIG.2012.2186810

    Article  Google Scholar 

  5. Buber, E., Banu, D.: Performance analysis and CPU vs GPU comparison for deep learning. In: 2018 6th International Conference on Control Engineering & Information Technology (CEIT), pp. 1–6. IEEE (2018)

    Google Scholar 

  6. Cazenave, T.: Nested Monte-Carlo search. In: Boutilier, C. (ed.) IJCAI, pp. 456–461 (2009)

    Google Scholar 

  7. Cazenave, T.: Generalized nested rollout policy adaptation. In: Monte Search at IJCAI (2020)

    Google Scholar 

  8. Cazenave, T., Fournier, T.: Monte Carlo inverse folding. In: Monte Search at IJCAI (2020)

    Google Scholar 

  9. Cazenave, T., Lucas, J.Y., Kim, H., Triboulet, T.: Monte Carlo vehicle routing. In: ATT at ECAI 2020, Saint Jacques de Compostelle, Spain (2020). https://hal.archives-ouvertes.fr/hal-03117515

  10. Cazenave, T., Negrevergne, B., Sikora, F.: Monte Carlo graph coloring. In: Monte Search at IJCAI (2020)

    Google Scholar 

  11. Cazenave, T., Saffidine, A., Schofield, M.J., Thielscher, M.: Nested Monte Carlo search for two-player games. In: AAAI, pp. 687–693 (2016)

    Google Scholar 

  12. Cazenave, T., Teytaud, F.: Application of the nested rollout policy adaptation algorithm to the traveling salesman problem with time windows. In: Learning and Intelligent Optimization - 6th International Conference, LION, vol. 6, pp. 42–54 (2012)

    Google Scholar 

  13. Dang, C., Bazgan, C., Cazenave, T., Chopin, M., Wuillemin, P.-H.: Monte Carlo search algorithms for network traffic engineering. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12978, pp. 486–501. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86514-6_30

    Chapter  Google Scholar 

  14. Dwivedi, A.D., Morawiecki, P., Wójtowicz, S.: Finding differential paths in ARX ciphers through nested Monte-Carlo search. Int. J. Electron. Telecommun. 64(2), 147–150 (2018)

    Google Scholar 

  15. Edelkamp, S., Cazenave, T.: Improved diversity in nested rollout policy adaptation. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 43–55. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46073-4_4

    Chapter  Google Scholar 

  16. Edelkamp, S., Gath, M., Cazenave, T., Teytaud, F.: Algorithm and knowledge engineering for the TSPTW problem. In: 2013 IEEE Symposium on Computational Intelligence in Scheduling (SCIS), pp. 44–51. IEEE (2013)

    Google Scholar 

  17. Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., Lawo, M.: Monte-Carlo tree search for logistics. In: Clausen, U., Friedrich, H., Thaller, C., Geiger, C. (eds.) Commercial Transport. LNL, pp. 427–440. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21266-1_28

    Chapter  Google Scholar 

  18. Edelkamp, S., Gath, M., Rohde, M.: Monte-Carlo tree search for 3D packing with object orientation. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS (LNAI), vol. 8736, pp. 285–296. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11206-0_28

    Chapter  Google Scholar 

  19. Edelkamp, S., Greulich, C.: Solving physical traveling salesman problems with policy adaptation. In: 2014 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE (2014)

    Google Scholar 

  20. Edelkamp, S., Tang, Z.: Monte-Carlo tree search for the multiple sequence alignment problem. In: Proceedings of the Eighth Annual Symposium on Combinatorial Search, SOCS 2015, pp. 9–17. AAAI Press (2015)

    Google Scholar 

  21. Fawzi, A., et al.: Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 610(7930), 47–53 (2022)

    Article  MATH  Google Scholar 

  22. Kinny, D.: A new approach to the snake-in-the-box problem. In: ECAI 2012. Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 462–467. IOS Press (2012)

    Google Scholar 

  23. Li, F., Ye, Y., Tian, Z., Zhang, X.: CPU versus GPU: which can perform matrix computation faster-performance comparison for basic linear algebra subprograms. Neural Comput. Appl. 31(8), 4353–4365 (2019)

    Article  Google Scholar 

  24. Méhat, J., Cazenave, T.: Combining UCT and Nested Monte Carlo Search for single-player general game playing. IEEE Trans. Comput. Intell. AI Games 2(4), 271–277 (2010)

    Article  Google Scholar 

  25. Mei, X., Zhao, K., Liu, C., Chu, X.: Benchmarking the memory hierarchy of modern GPUs. In: Hsu, C.-H., Shi, X., Salapura, V. (eds.) NPC 2014. LNCS, vol. 8707, pp. 144–156. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44917-2_13

    Chapter  Google Scholar 

  26. NVIDIA: Cuda C++ programming guide (2022). https://docs.NVIDIA.com/cuda/cuda-c-programming-guide, section: arithmetic-instructions

  27. Portela, F.: An unexpectedly effective Monte Carlo technique for the RNA inverse folding problem. BioRxiv, p. 345587 (2018)

    Google Scholar 

  28. Poulding, S.M., Feldt, R.: Generating structured test data with specific properties using nested Monte-Carlo search. In: GECCO, pp. 1279–1286 (2014)

    Google Scholar 

  29. Poulding, S.M., Feldt, R.: Heuristic model checking using a Monte-Carlo tree search algorithm. In: GECCO, pp. 1359–1366 (2015)

    Google Scholar 

  30. Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the nested Monte-Carlo algorithm on the traveling salesman problem with time windows. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 501–510. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0_51

    Chapter  Google Scholar 

  31. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo Tree Search. In: IJCAI, pp. 649–654 (2011)

    Google Scholar 

  32. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  Google Scholar 

  33. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wong, H., Papadopoulou, M., Sadooghi-Alvandi, M., Moshovos, A.: Demystifying GPU microarchitecture through microbenchmarking. In: 2010 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 235–246. IEEE (2010)

    Google Scholar 

  35. Wu, D.J.: Accelerating self-play learning in go. arXiv preprint arXiv:1902.10565 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian Buzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buzer, L., Cazenave, T. (2023). GPU for Monte Carlo Search. In: Sellmann, M., Tierney, K. (eds) Learning and Intelligent Optimization. LION 2023. Lecture Notes in Computer Science, vol 14286. Springer, Cham. https://doi.org/10.1007/978-3-031-44505-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44505-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44504-0

  • Online ISBN: 978-3-031-44505-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics