Skip to main content

Optimization in Pharmacy Automation System

  • Conference paper
  • First Online:
Systems Collaboration and Integration (ICPR1 2021)

Part of the book series: Automation, Collaboration, & E-Services ((ACES,volume 14))

Included in the following conference series:

  • 142 Accesses

Abstract

Prescription demand and the complexity of patients’ pharmaceutical protocols have significantly increased during the last decade. To achieve greater effectiveness of the overall prescription fulfillment process, the development and deployment of modern pharmacy automation systems, known as mail order pharmacy (MOP) or central fill pharmacy (CFP) systems, have been accelerated in recent years. Such advanced systems adopted automated robotic dispensing systems (RDS) and collation systems that can prepare more than tens of thousands of prescriptions per day. Designing and operating large-scale pharmacy systems are very complicated and expensive to ensure their expected throughputs and patient safety consideration. Therefore, a thorough system evaluation and investigation for potential improvement regarding the performance and operational efficiency should be conducted. This chapter aims to provide the detailed working mechanisms of pharmacy automation systems and introduce five important optimization problems in pharmacy automation, which include the RDS planogram design optimization, RDS replenishment optimization, collation system analysis, order scheduling optimization, and pharmacy database mining. To better demonstrate the optimization modeling in the context of pharmacy automation, a case study of the RDS replenishment process optimization based on modeling and simulation approaches is presented. The chapter also provides several research and development directions, which can potentially facilitate the realization of smart pharmacy automation solutions in the era of Industrial 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conti, R.M., Turner, A., Hughes-Cromwick, P.: Projections of US prescription drug spending and key policy implications. JAMA Health Forum 2(1), e201613 (2021). https://doi.org/10.1001/jamahealthforum.2020.1613

    Article  Google Scholar 

  2. U.S. prescription drug spending as high as $610 billion by 2021: report. https://www.reuters.com/article/us-usa-drugspending-quintilesims/u-s-prescription-drug-spending-as-high-as-610-billion-by-2021-report-idUSKBN1800BU

  3. WHO: World Health Organization. (2019). Coronavirus disease (COVID-19) outbreak situation

    Google Scholar 

  4. Ayati, N., Saiyarsarai, P., Nikfar, S.: Short and long term impacts of COVID-19 on the pharmaceutical sector. DARU J. Pharmace. Sci. 28(2), 799–805 (2020)

    Article  Google Scholar 

  5. Yang, Y.: Threshold-and Priority-Based Dispatching Rule in Mail-Order Pharmacy Automation Systems (Doctoral dissertation, State University of New York at Binghamton) (2021)

    Google Scholar 

  6. Khader, N.: Frequent pattern mining in a pharmacy database through the use of Hadoop. State University of New York at Binghamton (2014)

    Google Scholar 

  7. Angelo, L.B., Christensen, D.B., Ferreri, S.P.: Impact of community pharmacy automation on workflow, workload, and patient interaction. J. American Pharmac. Ass. JAPhA 45(2), 138–144 (2005)

    Article  Google Scholar 

  8. Tan, W.S., Chua, S.L., Yong, K.W., Wu, T.S.: Impact of pharmacy automation on patient waiting time: An application of computer simulation. Annals Academy of Medicine Singapore 38(6), 501 (2009)

    Article  Google Scholar 

  9. Beard, R.J., Smith, P.: Integrated electronic prescribing and robotic dispensing: a case study. Springerplus 2(1), 1–7 (2013)

    Article  Google Scholar 

  10. Shaya, F.T., Eddington, N.D.: Disruptive innovation in pharmacy: Lessons from the amazon frontier. In: JAMA Health Forum, vol. 1 (American Medical Association, 2020), pp. e200, 038–e200, 038 (2020)

    Google Scholar 

  11. Sundaramurthy, S.S.: Mining Frequent Itemsets of a Central Fill Pharmacy Transaction Database to Enhance the Planogram of Robotic Dispensing System (Doctoral dissertation, State University of New York at Binghamton) (2018)

    Google Scholar 

  12. O'Connor, R.: Minimizing Replenishment Cost in a Central Fill Pharmacy Using a Markov Chain (Doctoral dissertation, State University of New York at Binghamton) (2020)

    Google Scholar 

  13. Li, D., Yoon, S.W.: A novel fill-time window minimisation problem and adaptive parallel tabu search algorithm in mail-order pharmacy automation system. Int. J. Prod. Res. 53(14), 4189–4205 (2015)

    Article  Google Scholar 

  14. Wang, H., Yoon, S.W.: Drug dispenser replenishment optimization via mixed integer programming in central fill pharmacy systems. In: 2016 Industrial and Systems Engineering Research Conference, ISERC 2016 (2016)

    Google Scholar 

  15. Li, Y., Zhang, Q., Yoon, S.W.: Discrete event simulation-based collation system analysis in mail-order pharmacy automation system. In: IIE Annual Conference. Proceedings, pp. 828–833. Institute of Industrial and Systems Engineers (IISE) (2019)

    Google Scholar 

  16. Leading-edge pharmacy automation solutions. Retrieved September 18, 2022, from: https://iarx.com/

  17. Wang, H., Dauod, H., Khader, N., Yoon, S.W., Srihari, K.: Multi-objective parallel robotic dispensing planogram optimisation using association rule mining and evolutionary algorithms. Int. J. Comput. Integr. Manuf. 31(8), 799–814 (2018)

    Article  Google Scholar 

  18. Khader, N., Lashier, A., Yoon, S.W.: Pharmacy robotic dispensing and planogram analysis using association rule mining with prescription data. Expert Syst. Appl. 57, 296–310 (2016). https://doi.org/10.1016/j.eswa.2016.02.045

    Article  Google Scholar 

  19. Hansen, J.M., Raut, S., Swami, S.: Retail shelf allocation: a comparative analysis of heuristic and meta-heuristic approaches. J. Retail. 86(1), 94–105 (2010). https://doi.org/10.1016/j.jretai.2010.01.004

    Article  Google Scholar 

  20. Dauod, H., Serhan, D., Wang, H., Khader, N., Yoon, S.W., Srihari, K.: Robust receding horizon control strategy for replenishment planning of pharmacy robotic dispensing systems. Robo. Comp.-Integr. Manuf. 59, 177–188 (2019). https://doi.org/10.1016/j.rcim.2019.04.001

    Article  Google Scholar 

  21. Dauod, H., Wang, H., Khader, N., Yoon, S.W., Srihari, K.: Real-time dispenser replenishment optimization based on receding horizon control. Procedia Manufacturing 11, 1782–1789 (2017). https://doi.org/10.1016/j.promfg.2017.07.313

    Article  Google Scholar 

  22. O’Connor, R., Yoon, S.W., Kwon, S.: Analysis and optimization of replenishment process for robotic dispensing system in a central fill pharmacy. Comp. Two Collartio Ind. Eng. 154, 107116 (2021). https://doi.org/10.1016/j.cie.2021.107116

    Article  Google Scholar 

  23. Alhaag, M.H., Aziz, T., Alharkan, I.M.: A queuing model for health care pharmacy using software Arena. In: 2015 International Conference on Industrial Engineering and Operations Management, IEEE 2015, pp. 1–11 (2015)

    Google Scholar 

  24. Mei, K., Li, D., Yoon, S.W., Ryu, J.H.: Multi-objective optimization of collation delay and makespan in mail-order pharmacy automated distribution system. The Int. J. Adv. Manuf. Technol. 83(14), 475–488 (2016)

    Article  Google Scholar 

  25. Li, D., Yoon, S.W.: Simulation Based MANOVA Analysis of Pharmaceutical Automation System in Central Fill Pharmacy. IEEE InternationalConference on Industrial Engineering and Engineering Management, pp. 1647–1651 (Dec. 2012)

    Google Scholar 

  26. Wang, H., Yoon, S.W.: Evaluation and optimization of automatic drug dispensing/filling system. Proceedings of the 3rd Annual World Conference of the Society for Industrial and Systems Engineering (2014)

    Google Scholar 

  27. Wang, H., Serhan, D.M., Yoon, S.W.: Collation delay optimization using discrete event simulation in mail-order pharmacy automation systems. In: Proceedings of the 2016 Industrial and Systems Engineering Research Conference (2016)

    Google Scholar 

  28. Dauod, H., Li, D., Yoon, S.W., Srihari, K.: Multi-objective optimization of the order scheduling problem in mail-order pharmacy automation systems. The Int. J. Advan. Manuf. Technol. 1–11 (2016)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Watson Institute of Systems Excellence (WISE) at Binghamton University and by iA. The authors would like to thank the anonymous reviews for their valuable comments in improving the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, N., Alattar, M.S., Jin, Y., Kwon, S., Yoon, S.W. (2023). Optimization in Pharmacy Automation System. In: Huang, CY., Yoon, S.W. (eds) Systems Collaboration and Integration. ICPR1 2021. Automation, Collaboration, & E-Services, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-44373-2_19

Download citation

Publish with us

Policies and ethics