Skip to main content

A Comparative Study of YOLO V4 and V5 Architectures on Pavement Cracks Using Region-Based Detection

  • Conference paper
  • First Online:
Complex Computational Ecosystems (CCE 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13927))

Included in the following conference series:

  • 132 Accesses

Abstract

The frequent utilization of land transportation systems has led to the further deterioration of roads and caused traffic hazards. Early detection of asphalt pavement distresses has a necessary role in eliminating these hazards. Implementing an efficient automated method for detecting, locating, and classifying pavement distresses could help to address this problem in its early phase. This automated system has the potential to assist governments in maintaining road conditions effectively, especially those that aim to build smart cities. Furthermore, smart cars equipped with sensors and cameras can further contribute to road conditions and pavement distress inspection. The YOLO algorithm has demonstrated its potential to automate the detection process with real-time object detection and has shown promising results to be integrated into smart cars. The primary focus of this paper was to compare the performance of YOLOv4 and YOLOv5 in detecting thin and small crack objects using two publicly available image datasets, EdmCrack600 and RDD2022. Our comparisons were based not only on the architectures themselves but also on the number of classes in datasets that represent various types of pavement cracks. Additionally, we introduced an augmentation technique that is specific to crack objects in order to address the imbalanced class representation in the EdmCrack600 dataset. This technique improved final results by 11.2%. Overall, our comparisons indicated that YOLOv5 demonstrated better accuracy by achieving a mean average precision (mAP) of 65.6% on the RDD2022 dataset, and a mAP of 42.3% on the EdmCrack600 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/kiyoshiiriemon/yolov4_darknet#how-to-train-to-detect-your-custom-objects.

References

  1. Pais, J.C., Amorim, S.I.R., Minhoto, M.J.C.: Impact of traffic overload on road pavement performance. J. Transport. Eng. 139, 9 (2013)

    Article  Google Scholar 

  2. Qiao, Y., Flintsch, G.W., Dawson, A.R., Parry, T.: Examining effects of climatic factors on flexible pavement performance and service life. Transp. Res. Rec. 2349, 100–107 (2013)

    Article  Google Scholar 

  3. World Health Organization. Global status report on road safety: time for action. In: Violence, Injury Prevention, and World Health Organization. World Health Organization (2009)

    Google Scholar 

  4. Varadharajan, S., Jose, S., Sharma, K., Wander, L., Mertz, C.: Vision for road inspection. In: IEEE winter conference on applications of computer vision, pp. 115–122. IEEE (2014)

    Google Scholar 

  5. Yu, J.-M., Lee, C., Chen, L.-L.: Survival model-based economic evaluation of preventive maintenance practice on asphalt pavement. J. South China Univ. Technol. 40(11), 133–137 (2012)

    Google Scholar 

  6. Arena, F., Pau, G., Severino, A.: An overview on the current status and future perspectives of smart cars. Infrastructures 5(7), 53 (2020)

    Article  Google Scholar 

  7. Huval, B., et al.: An empirical evaluation of deep learning on highway driving. arXiv preprint arXiv:1504.01716 (2015)

  8. Sattar, D., Thomas, R.J., Maguire, M.: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Constr. Build. Mater. 186, 1031–1045 (2018)

    Article  Google Scholar 

  9. Klette, R.: Concise Computer Vision: An Introduction into Theory and Algorithms, vol. 233. Springer, London (2014)

    Book  MATH  Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  11. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  13. Liu, W., et al.: SSD: single shot multiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

  14. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  15. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  16. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  17. Alexey, B., Wang, C.-Y., Mark Liao, H.-Y.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  18. Jocher, G., Chaurasia, A., Stoken, A., Borovec, J.: NanoCode012. In: Kwon, Y., et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (v7.0). Zenodo (2022). https://doi.org/10.5281/zenodo.7347926

  19. Hacıefendioğlu, K., Basri Başağa, H.: Concrete road crack detection using deep learning-based faster R-CNN method. Iranian J. Sci. Technol. Trans. Civil Eng. 1–13 (2022)

    Google Scholar 

  20. Xu, X., et al.: Crack detection and comparison study based on faster R-CNN and mask R-CNN. Sensors 22(3), 1215 (2022)

    Article  MathSciNet  Google Scholar 

  21. Wang, C., Mark Liao, H., Wu, Y., Chen, P., Hsieh, J., Yeh, I.: Cspnet: a new backbone that can enhance learning capability of CNN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1571–1580 (2020)

    Google Scholar 

  22. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017)

  23. Zhang, Y., Huang, J., Cai, F.: On bridge surface crack detection based on an improved YOLO v3 algorithm. IFAC-PapersOnLine 53(2) (2020)

    Google Scholar 

  24. Li, L., Fang, B., Zhu, J.: Performance analysis of the YOLOv4 algorithm for pavement damage image detection with different embedding positions of CBAM modules. Appl. Sci. 12(19), 10180 (2022)

    Article  Google Scholar 

  25. Liu, Z., Wu, W., Gu, X., Li, S., Wang, L., Zhang, T.: Application of combining YOLO models and 3D GPR images in road detection and maintenance. Remote Sens. 13(6), 1081 (2021)

    Article  Google Scholar 

  26. Yao, G., Sun, Y., Wong, M., Lv, X.: A real-time detection method for concrete surface cracks based on improved YOLOv4. Symmetry 13(9), 1716 (2021)

    Article  Google Scholar 

  27. Yao, G., Sun, Y., Yang, Y., Liao, G.: Lightweight neural network for real-time crack detection on concrete surface in fog. Front. Mater. 8 (2021)

    Google Scholar 

  28. Wan, F., Sun, C., He, H., Lei, G., Xu, L., Xiao, T.: YOLO-LRDD: a lightweight method for road damage detection based on improved YOLOv5s. EURASIP J. Adv. Signal Process. 2022(1) (2022)

    Google Scholar 

  29. Teng, S., Liu, Z., Chen, G., Cheng, L.: Concrete crack detection based on well-known feature extractor model and the YOLO_v2 network. Appl. Sci. 11(2) (2021)

    Google Scholar 

  30. Mandal, V., Mussah, A.R., Adu-Gyamfi, Y.: Deep learning frameworks for pavement distress classification: a comparative analysis. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 5577–5583. IEEE (2020)

    Google Scholar 

  31. Qiu, Q., Lau, D.: Real-time detection of cracks in tiled sidewalks using YOLO-based method applied to unmanned aerial vehicle (UAV) images. Autom. Constr. 147, 104745 (2023)

    Article  Google Scholar 

  32. Mei, Q., Gül, M., Azim, M.R.: Densely connected deep neural network considering connectivity of pixels for automatic crack detection. Autom. Constr. 110, 103018 (2020)

    Article  Google Scholar 

  33. Mei, Q., Gül, M.: A cost effective solution for pavement crack inspection using cameras and deep neural networks. Constr. Build. Mater. 256, 119397 (2020)

    Article  Google Scholar 

  34. Mei, Q., Gül, M., Shirzad-Ghaleroudkhani, N.: Towards smart cities: crowdsensing-based monitoring of transportation infrastructure using moving vehicles. J. Civil Struct. Health Monitor. (2020)

    Google Scholar 

  35. Tzutalin. LabelImg (2015). https://github.com/tzutalin/labelImg. Accessed 15 Dec 2022

  36. Deeksha, A., Maeda, H., Ghosh, S.K., Toshniwal, D., Sekimoto, Y.: RDD2022: a multi-national image dataset for automatic road damage detection. arXiv preprint arXiv:2209.08538 (2022)

  37. Zhu, H., Wei, H., Li, B., Yuan, X., Kehtarnavaz, N.: A review of video object detection: datasets, metrics and methods. Appl. Sci. 10(21), 7834 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rauf Fatali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fatali, R., Safarli, G., El Zant, S., Amhaz, R. (2023). A Comparative Study of YOLO V4 and V5 Architectures on Pavement Cracks Using Region-Based Detection. In: Collet, P., Gardashova, L., El Zant, S., Abdulkarimova, U. (eds) Complex Computational Ecosystems. CCE 2023. Lecture Notes in Computer Science, vol 13927. Springer, Cham. https://doi.org/10.1007/978-3-031-44355-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44355-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44354-1

  • Online ISBN: 978-3-031-44355-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics