Skip to main content

Electro-Optical Surveillance Systems for Unmanned Ground Vehicle

  • Chapter
  • First Online:
Advanced System Development Technologies I

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 511))

  • 110 Accesses

Abstract

The methodological bases for improving the electro-optical surveillance systems (EOSS) with image fusion performance are scientifically substantiated. Two-channel EOSS with television and thermal imaging channels are investigated. The mathematical model “observed scene-EOSS-operator” was created. Information transformation in the EOSS spectrum channels was studied for daytime and night observation conditions. Radiometric and spatial resolution of the system was evaluated within the model depending on the viewing angle. The targeting task performance (TTP) metric was proposed for evaluating the visual quality of image fusion in the EOSS. The image fusion strategy, which allows to increase the maximum detection range of objects in dual-channel EOSS was developed. It enables investigation of the image fusion process and its visual perception by the operator, as well, as matching main information channel for image fusion. To determine the main information channel, the TTP metric is calculated analytically considering that object’s contrast does not depend on the spatial frequencies. When determining the best image fusion method, the TTP metric is calculated using numerical methods based on real spatial spectra of images that have been fused using different methods. The fusion method, which provides the maximum value of the TTP metric, is considered the best. The developed method allows calculate the probability of detection, recognition and identification of an object, which is observed by the EOSS with image fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finabel. European Army Interoperability Centre.: The Re-Emergence of Unmanned Ground Vehicles in Army Modernisation Efforts (2023). https://finabel.org/wp-content/uploads/2022/08/IF-22.08-new.pdf

  2. Driggers, R.G., Nichols, J., Friedman, M.H.: Introduction to Infrared and Electro-Optical Systems, 2nd edn. Artech House (2012)

    Google Scholar 

  3. Flusser, J., Sroubek, F., Zitova, B.: Image fusion: principles, methods, and applications. In: European Signal Processing Conference EUSIPCO (2007). http://staff.utia.cas.cz/sroubekf/papers/EUSIPCO_07_fusion_tut.pdf

  4. Bruce, V., Georgeson, M.A., Green, P.R.: Visual Perception: physiology, Psychology and Ecology, 4th edn. Psychology Press, New York (2003)

    Google Scholar 

  5. Borst, G., Kosslyn, S.M.: Visual mental imagery and visual perception: structural equivalence revealed by scanning processes. Mem. Cognit. 36, 849–862 (2008). https://doi.org/10.3758/MC.36.4.849

    Article  Google Scholar 

  6. Holst, G.C.: Electro-Optical Imaging System Performance, 5th edn. JCD Publishing, Winter Park, Florida (2008)

    Google Scholar 

  7. North Atlantic Treaty Organization (NATO).: STANAG 4347. Definition of Nominal Static Range Performance for Thermal Imaging Systems (1995). https://standards.globalspec.com/std/518793/STANAG%204347

  8. Jagalingam, P., Hegde, A.V.: A review of quality metrics for fused image. Aquatic Procedia 4, 133–142 (2015). https://doi.org/10.1016/j.aqpro.2015.02.019

    Article  Google Scholar 

  9. Piella, G.: New quality measures for image fusion. In: Proceeding of the 7th International Conference on Information Fusion, pp. 1559–1564 (2004). https://www.researchgate.net/publication/2932816_New_Quality_Measures_for_Image_Fusion

  10. Hall, D.L.: Handbook Of Multisensor Data Fusion. Theory and Practice, 2nd edn. CRC Press. Taylor & Francis Group (2009)

    Google Scholar 

  11. Blum, R.S.: Multi-Sensor Image Fusion and Its Applications. CRC Press (2006)

    Google Scholar 

  12. Kolobrodov, V.H., Mykytenko, V.I.: Kompleksuvannya informatsiyi v bahatokanal’nykh optyko-elektronnykh systemakh sposterezhennya. Kyiv, Polihrafichnyy tsentr “Avers”. (in Ukrainian) (2013)

    Google Scholar 

  13. Chyzh, I., Kolobrodov, V., Molodyk, A., Mykytenko, V., Tymchik, G., Romaniuk, R., Kisała, P., Kalizhanova, A., Yeraliyeva, B.: Energy resolution of dual-channel opto-electronic surveillance system. In: Proceedings of SPIE—The International Society for Optical Engineering. 115810K (2020). https://doi.org/10.1117/12.2580338. https://doi.org/10.1117/12.2580338

  14. Mykytenko, V.I., Baltabayev, M.M., Ponomarenko, O.A.: Kompleksuvannya zobrazhen’ u tsilodobovykh dvokanal’nykh systemakh sposterezhennya. Visnyk NTUU “KPI”. Seriya pryladobuduvannya. 48, 43–49 (2014). (in Ukrainian)

    Google Scholar 

  15. Yakushenkov, Y.G.: Teoriya i raschet optiko-elektronnykh priborov, 5-ye izd. Logos. (in Russian) (2004)

    Google Scholar 

  16. Melamed, R., Yitzhaky, Y., Kopeika, N.S., Rotman, S.R.: Experimental comparison of three target acquisition models. Opt. Eng. 37(7), 1902–1913 (1998). https://www.ee.bgu.ac.il/~itzik/papers/A4.pdf

  17. Vollmerhausen, R.H.: Night vision integrated performance model: impact of a recent change on the model’s predictive accuracy. Opt. Express 24(21), 23654–23666 (2016). https://doi.org/10.1364/OE.24.023654

    Article  Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  19. Qu, G., Zhang, D., Yan, P.: Information measure for performance of image fusion. Electron. Lett. 38(7), 313–315 (2002). https://doi.org/10.1049/el:20020212

    Article  Google Scholar 

  20. Xydeas, C.S., Petrovic, V.: Objective image fusion performance measure. Electron. Lett. 36(4), 308–309 (2000). https://doi.org/10.1049/el:20000267

    Article  Google Scholar 

  21. Kolobrodov, V.H., Mamuta, M.S., Mykytenko, V.I.: Otsinka efektyvnosti bahatokanal’nykh optyko-elektronnykh system sposterezhennya z kompleksuvannyam informatsiyi. Naukovi visti NTUU “KPI” 86(6), 127–131 (2012). http://nbuv.gov.ua/UJRN/NVKPI_2012_6_20. (in Ukrainian)

  22. Vollmerhausen, R., Jacobs, E., Driggers, R.: New metric for predicting target acquisition performance. Opt. Eng. 11, 2806–2818 (2004). https://doi.org/10.1117/1.1799111

    Article  Google Scholar 

  23. Mykytenko, V.I., Rybalko, M.S.: Uzhodzhennya diametriv vkhidnykh zinyts’ dzerkal’no-linzovoho ob”yektyvu dvokanal’noyi OESS. Visnyk NTUU “KPI”. Seriya pryladobuduvannya 42, 54–61 (2011). (in Ukrainian)

    Google Scholar 

  24. Bezuglyi, M., Haponiuk, A., Bezugla, N., Vonsevych, K.: Blood glucose analysis by Raman spectrophotometer with ellipsoidal reflector. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 12040, 120400B (2021). https://doi.org/10.1117/12.2613340

  25. Bezuglyi, M., Bezuglaya, N.: Raman spectroscopy principles for in vivo diagnostic by ellipsoidal reflectors. Electr. Control. Commun. Eng. 15(1), 39–46 (2019). https://doi.org/10.2478/ecce-2019-0006

    Article  Google Scholar 

  26. Vollmerhausen, R.H., Jacobs, E.: The Targeting Task Performance Metric: a New Model for Predicting Target Acquisition Performance. Technical Report, AMSEL-NV-TR-230, US Army CERDEC, Fort Belvoir. VA 22060 (2003)

    Google Scholar 

  27. Barten, P.G.J.: Formula for the contrast sensitivity of the human eye. Proc. SPIE 5294, 231–238 (2004). https://doi.org/10.1117/12.537476

    Article  Google Scholar 

  28. Vollmerhausen, R.H., Reago, D., Driggers, R.G.: Analysis and Evaluation of Sampled Imaging Systems. SPIE Press (2010)

    Google Scholar 

  29. Kopeika, N.S.: A System Engineering Approach to Imaging. Bellingham, SPIE Optical Engineering Press, Washington (1998)

    Book  Google Scholar 

  30. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 5, 21–36 (2003). https://doi.org/10.1109/MSP.2003.1203207

    Article  Google Scholar 

  31. Mykytenko, V.I., Rybalko, M.S.: Pidvyshchennya rozdil’noyi zdatnosti zobrazhen’, spotvorenykh liniynym rivnomirnym rukhom. Visnyk NTUU “KPI”. Seriya pryladobuduvannya 36, 24–30 (2008). (in Ukrainian)

    Google Scholar 

  32. Gillette, J.C., Stadtmiller, T.M., Hardie, R.C.: Aliasing reduction in staring infrared imagers utilizing subpixel techniques. Opt. Eng. 34(11), 3130–3137 (1995). https://doi.org/10.1117/12.213590

    Article  Google Scholar 

  33. Miller, J.L., Wiltse, J.M.: Benefits of microscan for staring infrared imagers. In: Proceedings of the SPIE 5407, Infrared Imaging Systems: design, Analysis, Modeling, and Testing XV (2004). https://doi.org/10.1117/12.541432

  34. Akman, O., Jonker, P.: Computing saliency map from spatial information in point cloud data. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P., (eds.) Advanced Concepts for Intelligent Vision Systems. ACIVS 2010. Lecture Notes in Computer Science, vol. 6474. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17688-3_28

  35. Juneja, M., Sandhu, P.S.: Performance evaluation of edge detection techniques for images in spatial domain. Int. J. Comput. Theory Eng. 1(5), 1793–8201 (2009). https://doi.org/10.7763/IJCTE.2009.V1.100

    Article  Google Scholar 

  36. Mamuta, M.S., Mykytenko, V.I., Mamuta, O.D.: Sposib kompleksuvannya v dvokanal’nykh ikonichnykh systemakh (Ukraine Patent No. 82581). Derzhavna sluzhba intelektual’noyi vlasnosti Ukrayiny (2013). (in Ukrainian)

    Google Scholar 

  37. Lloyd, J.M.: Thermal Imaging Systems. Plenum Press, New York (1975)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Mykytenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mykytenko, V. (2024). Electro-Optical Surveillance Systems for Unmanned Ground Vehicle. In: Bezuglyi, M., Bouraou, N., Mykytenko, V., Tymchyk, G., Zaporozhets, A. (eds) Advanced System Development Technologies I. Studies in Systems, Decision and Control, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-031-44347-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44347-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44346-6

  • Online ISBN: 978-3-031-44347-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics