Skip to main content

Generating Sparse Counterfactual Explanations for Multivariate Time Series

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

Since neural networks play an increasingly important role in critical sectors, explaining network predictions has become a key research topic. Counterfactual explanations can help to understand why classifier models decide for particular class assignments and, moreover, how the respective input samples would have to be modified such that the class prediction changes. Previous approaches mainly focus on image and tabular data. In this work we propose SPARCE, a generative adversarial network (GAN) architecture that generates SPARse Counterfactual Explanations for multivariate time series. Our approach provides a custom sparsity layer and regularizes the counterfactual loss function in terms of similarity, sparsity, and smoothness of trajectories. We evaluate our approach on real-world human motion datasets as well as a synthetic time series interpretability benchmark. Although we make significantly sparser modifications than other approaches, we achieve comparable or better performance on all metrics. Moreover, we demonstrate that our approach predominantly modifies salient time steps and features, leaving non-salient inputs untouched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ates, E., Aksar, B., Leung, V.J., Coskun, A.K.: Counterfactual explanations for multivariate time series. In: 2021 International Conference on Applied Artificial Intelligence (ICAPAI), pp. 1–8. IEEE (2021)

    Google Scholar 

  2. Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual explanations. In: Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, C., Emmerich, M., Trautmann, H. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 448–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_31

    Chapter  Google Scholar 

  3. Delaney, E., Greene, D., Keane, M.T.: Instance-based counterfactual explanations for time series classification. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds.) ICCBR 2021. LNCS (LNAI), vol. 12877, pp. 32–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86957-1_3

    Chapter  Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  5. Gumbsch, C., Butz, M.V., Martius, G.: Sparsely changing latent states for prediction and planning in partially observable domains. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Ismail, A.A., Gunady, M., Corrada Bravo, H., Feizi, S.: Benchmarking deep learning interpretability in time series predictions. Adv. Neural. Inf. Process. Syst. 33, 6441–6452 (2020)

    Google Scholar 

  8. Karimi, A.H., Schölkopf, B., Valera, I.: Algorithmic recourse: from counterfactual explanations to interventions. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 353–362 (2021)

    Google Scholar 

  9. Keane, M.T., Smyth, B.: Good counterfactuals and where to find them: a case-based technique for generating counterfactuals for explainable AI (XAI). In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 163–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2_11

    Chapter  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  11. Lang, J., Giese, M.A., Synofzik, M., Ilg, W., Otte, S.: Early recognition of ball catching success in clinical trials with RNN-based predictive classification. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12894, pp. 444–456. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86380-7_36

    Chapter  Google Scholar 

  12. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 1–27 (2008)

    MATH  Google Scholar 

  13. Malekzadeh, M., Clegg, R.G., Cavallaro, A., Haddadi, H.: Mobile sensor data anonymization. In: Proceedings of the International Conference on Internet of Things Design and Implementation, pp. 49–58. IoTDI 2019, ACM, New York, NY, USA (2019)

    Google Scholar 

  14. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

    Google Scholar 

  15. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  16. Nemirovsky, D., Thiebaut, N., Xu, Y., Gupta, A.: CounterGAN: generating realistic counterfactuals with residual generative adversarial nets. arXiv preprint arXiv:2009.05199 (2020)

  17. Van Looveren, A., Klaise, J., Vacanti, G., Cobb, O.: Conditional generative models for counterfactual explanations. arXiv preprint arXiv:2101.10123 (2021)

  18. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. JL & Tech. 31, 841 (2017)

    Google Scholar 

  19. Yoon, J., Jarrett, D., Van der Schaar, M.: Time-series generative adversarial networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Otte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lang, J., Giese, M.A., Ilg, W., Otte, S. (2023). Generating Sparse Counterfactual Explanations for Multivariate Time Series. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14259. Springer, Cham. https://doi.org/10.1007/978-3-031-44223-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44223-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44222-3

  • Online ISBN: 978-3-031-44223-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics