Skip to main content

Sequence-Based Modeling for Temporal Knowledge Graph Link Prediction

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

Currently, the majority of research in temporal knowledge graph link prediction focuses on completing missing facts. Nevertheless, the utilization of knowledge graphs to forecast future facts has garnered significant scholarly attention. The attainment of efficient future fact prediction for time-series data hinges primarily on an in-depth exploration of both past historical facts and concurrent facts in the present. Presently, the majority of research in this domain lacks an all-encompassing integration of temporal points and durations in factual features, thereby hindering the effective management of two distinct types of facts with varying chronologies and ultimately disregarding their latent influence on future facts. This paper introduces an advanced representation model - the Progressive Representation Graph Attention Network (PRGAN) - which harnesses the potential of Graph Convolutional Neural Network and Recurrent Neural Network. PRGAN aims to ameliorate the existing shortcomings and augment the efficacy of future event prediction through attention-based learning of progressive representations of entities and relations in time series. We evaluated our proposed method with five event datasets. Extensive experimentation revealed that, in comparison with other baseline models, the PRGAN model displayed remarkable performance and efficiency in temporal reasoning tasks, thereby demonstrating its outstanding superiority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: Knowledge graphs: a survey of techniques and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2016)

    Google Scholar 

  2. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: Proceedings of the 34th Proceedings of the International Conference on Machine Learning, vol. 70, pp. 3462–3471. ACM (2017)

    Google Scholar 

  3. Jin, W., Zhang, C., Szekely, P., Ren, X.: Recurrent event network for reasoning over temporal knowledge graphs. In: Proceedings of the 7th International Conference on Learning Representations (2019)

    Google Scholar 

  4. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  5. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2018)

    Article  Google Scholar 

  6. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NeurIPS (2013)

    Google Scholar 

  7. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)

    Google Scholar 

  8. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

    Google Scholar 

  9. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: NeurIPS (2018)

    Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  11. Jiang, T., Liu, T., Ge, T., Sha, L., Chang, B., et al.: Towards time-aware knowledge graph completion. In: Proceedings of the COLING, Osaka, Japan, pp. 1715–1724 (2016)

    Google Scholar 

  12. Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of the EMNLP, Brussels, Belgium, pp. 2001–2011 (2018)

    Google Scholar 

  13. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI, Quebec City, Quebec, Canada, pp. 1112–1119 (2014)

    Google Scholar 

  14. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. In: Proceedings of the AAAI, New York, New York, USA, pp. 3988–3995 (2020)

    Google Scholar 

  15. Bai, L., Ma, X., Zhang, M., Wenting, Yu.: TPmod: a tendency-guided prediction model for temporal knowledge graph completion. ACM Trans. Knowl. Discov. Data 15(3), 17 (2021). Article 41

    Article  Google Scholar 

  16. Fu, G., et al.: TempCaps: a capsule network-based embedding model for temporal knowledge graph completion. In: Proceedings of the Sixth Workshop on Structured Prediction for NLP, pp. 22–31 (2022)

    Google Scholar 

  17. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems, pp. 3859–3869 (2017)

    Google Scholar 

  18. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  19. Yasseri, T., Bright, J., Margetts, H.: Wikipedia as a data source for political scientists: accuracy and completeness of coverage. PS: Polit. Sci. Polit. 45(04), 711–716 (2012)

    Google Scholar 

  20. Mahdisoltani, F., Biega, J., Suchanek, F.: YAGO3: a knowledge base from multilingual Wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research. CIDR Conference (2014)

    Google Scholar 

  21. Leetaru, K., Schrodt, P.A.: GDELT: global data on facts, location, and tone, 1979–2012. In: ISA annual convention, vol. 2, 1–49. Citeseer (2013)

    Google Scholar 

  22. King, G., Lam, P., Roberts, M.: The integrated crisis early warning system (ICEWS)-a framework for the automated analysis of societal-level crisis early warning. J. Peace Res. 50(2), 275–285 (2013)

    Google Scholar 

  23. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware convolutional networks for knowledge base completion (2019)

    Google Scholar 

  24. Lample, G., Sablayrolles, A., Ranzato, M., Larochelle, H.: Vector-Less objectives for neural machine translation. arXiv preprint arXiv:1902.01370 (2019)

  25. Sun, Z., Deng, H., Nie, L., Tang, L., Yang, Y., Liu, Z.: RotatE: knowledge graph embedding by relational rotation in complex space. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4602–4609 (2019)

    Google Scholar 

  26. Du, X., Dai, H., He, M., Zhang, Y.: Temporal attentive knowledge graph embedding for predicting social facts. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7488–7498 (2020)

    Google Scholar 

  27. Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_33

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R &D Program of China under Grant No. 2020YFB1710200, China Higher Education Innovation Fund No. 2021ITA05010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Liu, W., Xiong, Z., Wang, Y. (2023). Sequence-Based Modeling for Temporal Knowledge Graph Link Prediction. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14257. Springer, Cham. https://doi.org/10.1007/978-3-031-44216-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44216-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44215-5

  • Online ISBN: 978-3-031-44216-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics