Skip to main content

Mixing Domains for Smartly Picking and Using Limited Datasets in Industrial Object Detection

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14253))

Included in the following conference series:

  • 514 Accesses

Abstract

Object detection is a popular computer vision task that is performed by autonomous industrial robots. However, training a detection model requires a large annotated image dataset that belongs to the camera domain of the robot (the test domain). Acquiring such data in a similar domain or rendering photo-realistic images from a realistic virtual environment composed of accurate 3D models and using powerful hardware, can be expensive, time-consuming, and requires specialized expertise. This article focuses on investigating the growth of average precision (AP) in object detection as we progressively train and test our models using various combinations of acquired and rendered datasets from different domains: real and synthetic. By analyzing the results on industrial load carrier box detection, we discovered that a hybrid dataset comprising 20–30% of images similar to the test domain leads to achieving nearly maximum detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The real image dataset cannot be shared due to confidential reasons. Only, the rendered synthetic dataset is available upon a valid request from the corresponding author.

  2. 2.

    R has clearly shown better results on R only (\(AP_{R+S:R}\) = 90.74% at r = 1.00) compared to its performance on S (\(AP_{S+R:S}\) = 5.49% at r = 0.00).

References

  1. Abou Akar, C., Tekli, J., Jess, D., Khoury, M., Kamradt, M., Guthe, M.: Synthetic object recognition dataset for industries. In: 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), vol. 1, pp. 150–155. IEEE (2022)

    Google Scholar 

  2. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)

  3. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2016)

    Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  5. Greff, K., et al.: Kubric: a scalable dataset generator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3749–3761 (2022)

    Google Scholar 

  6. Hinterstoisser, S., Pauly, O., Heibel, H., Martina, M., Bokeloh, M.: An annotation saved is an annotation earned: Using fully synthetic training for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  7. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks?. arXiv preprint arXiv:1610.01983 (2016)

  8. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  9. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  10. Meng, J., et al.: The future of computer vision. APSIPA Trans. Signal Inf. Process. 11(1) (2022)

    Google Scholar 

  11. Morrical, N., et al.: Nvisii: A scriptable tool for photorealistic image generation. arXiv preprint arXiv:2105.13962 (2021)

  12. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)

  13. Petrovic, O., Duarte, D.L.D., Storms, S., Herfs, W.: Towards knowledge-based generation of synthetic data by taxonomizing expert knowledge in production. In: Intelligent Human Systems Integration (IHSI 2023): Integrating People and Intelligent Systems, vol. 69, no. 69 (2023)

    Google Scholar 

  14. PNVR, K., Zhou, H., Jacobs, D.: Sharingan: combining synthetic and real data for unsupervised geometry estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13974–13983 (2020)

    Google Scholar 

  15. Ravuri, S., Vinyals, O.: Classification accuracy score for conditional generative models. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  17. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  18. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)

    Google Scholar 

  19. Seib, V., Lange, B., Wirtz, S.: Mixing real and synthetic data to enhance neural network training–a review of current approaches. arXiv preprint arXiv:2007.08781 (2020)

  20. Saleh, F.S., Aliakbarian, M.S., Salzmann, M., Petersson, L., Alvarez, J.M.: Effective use of synthetic data for urban scene semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 84–100 (2018)

    Google Scholar 

  21. Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S.N., Chellappa, R.: Learning from synthetic data: addressing domain shift for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3752–3761 (2018)

    Google Scholar 

  22. Seib, V., Lange, B., Wirtz, S.: Mixing real and synthetic data to enhance neural network training-a review of current approaches. arXiv preprint arXiv:2007.08781 (2020)

  23. Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8430–8439 (2019)

    Google Scholar 

  24. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  25. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30. IEEE (2017)

    Google Scholar 

  26. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  27. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: a convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)

  28. Yao, Y., Zheng, L., Yang, X., Naphade, M., Gedeon, T.: Simulating content consistent vehicle datasets with attribute descent. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 775–791. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_46

    Chapter  Google Scholar 

  29. Zabir, M., Fazira, N., Ibrahim, Z., Sabri, N.: Evaluation of pre-trained convolutional neural network models for object recognition. Int. J. Eng. Technol. 7(3.15), 95–98 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chafic Abou Akar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abou Akar, C., Semaan, A., Haddad, Y., Kamradt, M., Makhoul, A. (2023). Mixing Domains for Smartly Picking and Using Limited Datasets in Industrial Object Detection. In: Christensen, H.I., Corke, P., Detry, R., Weibel, JB., Vincze, M. (eds) Computer Vision Systems. ICVS 2023. Lecture Notes in Computer Science, vol 14253. Springer, Cham. https://doi.org/10.1007/978-3-031-44137-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44137-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44136-3

  • Online ISBN: 978-3-031-44137-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics