Skip to main content

Feature Importance Study for Biogas Production from POME Treatment Plants Using Out-of-Bag Permutation

  • Chapter
  • First Online:
Cutting Edge Applications of Computational Intelligence Tools and Techniques

Abstract

Methane capturing systems (MCS) for electricity generation in the palm oil mill effluent (POME) treatment process are emphasized to reduce methane emissions. However, the presence of carbon dioxide and hydrogen sulfide in POME biogas affect the heating quality of the biogas. Therefore, proper understanding on the parameters which could affect the emission of these impurities is necessary to curb their production. Due to limited available data, Synthetic Minority Oversampling Technique (SMOTE) was applied to expand the dataset for training purposes. In this study, a random forest based out-of-bag permutation feature importance study was conducted by assessing the influence of temperature, pH and organic loading rate (OLR), chemical oxygen demand (COD), total solids (TS), biological oxygen demand (BOD), suspended solids (SS), and hydraulic retention time (HRT) on methane, carbon dioxide and hydrogen sulfide emission. Temperature, pH and organic loading rate were found to be the most influential parameters for methane and carbon dioxide production, while pH was replaced by suspended solids the case of hydrogen sulfide. The final random forest machine learning model generated performance metrics for R2 and RMSE with values of 0.98 and 0.131 and 0.99 and 0.061, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malaysian Palm Oil Board (2011) Environmental Impact , Malaysian Palm Oil Board.

    Google Scholar 

  2. WWF (2021) Palm Oil Buyers Scorecard. Gland, Switzerland.

    Google Scholar 

  3. McCarthy, N. (2020) Which Countries Produce The Most Palm Oil? , Forbes.

    Google Scholar 

  4. Department of Statistics Malaysia (2021) Selected Agricultural Indicators, Malaysia, 2021, Department of Statistics Malaysia.

    Google Scholar 

  5. Vijay, V., Pimm, S.L., Jenkins, C.N. and Smith, S.J. (2016) ‘The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss’, PLOS ONE, 11(7), p. e0159668. doi:https://doi.org/10.1371/JOURNAL.PONE.0159668.

    Article  Google Scholar 

  6. Harsono, S.S., Grundmann, P. and Soebronto, S. (2014) ‘Anaerobic treatment of palm oil mill effluents: potential contribution to net energy yield and reduction of greenhouse gas emissions from biodiesel production’, Journal of Cleaner Production, 64, pp. 619–627. doi:https://doi.org/10.1016/j.jclepro.2013.07.056.

    Article  Google Scholar 

  7. Ahmad, A.L., Ismail, S. and Bhatia, S. (2003) ‘Water recycling from palm oil mill effluent (POME) using membrane technology’, Desalination, 157(1–3), pp. 87–95. doi:https://doi.org/10.1016/S0011-9164(03)00387-4.

    Article  Google Scholar 

  8. Kamyab, H., Din, M.F.M., Keyvanfar, A., Majid, M.Z.A., Talaiekhozani, A., Shafaghat, A., Lee, C.T., Shiun, L.J. and Ismail, H.H. (2015) ‘Efficiency of Microalgae Chlamydomonas on the Removal of Pollutants from Palm Oil Mill Effluent (POME)’, Energy Procedia, 75, pp. 2400–2408. doi:https://doi.org/10.1016/J.EGYPRO.2015.07.190.

    Article  Google Scholar 

  9. Kamyab, H., Chelliapan, S., Din, M.F.M., Rezania, S., Khademi, T. and Kumar, A. (2018) ‘Palm Oil Mill Effluent as an Environmental Pollutant’, in Palm Oil Mill Effluent as an Environmental Pollutant. InTech, pp. 13–28. doi:https://doi.org/10.5772/INTECHOPEN.75811.

  10. Kheang Loh, S., Mei Ee, L., Muzzammil Ngatiman, ;, Weng Soon, L., Yuen May, C., Zhang, Z. and Salimon, J. (2013) ‘ZERO DISCHARGE TREATMENT TECHNOLOGY OF PALM OIL MILL EFFLUENT’, Journal of Oil Palm Research, 25(3), pp. 273–281.

    Google Scholar 

  11. Shakib, N. and Rashid, M. (2019) ‘Biogas Production Optimization from POME by Using Anaerobic Digestion Process’, Journal of Applied Science & Process Engineering, 6(2), pp. 369–377. doi:https://doi.org/10.33736/JASPE.1711.2019.

    Article  Google Scholar 

  12. A Aziz, M.M., Kassim, K.A., ElSergany, M., Anuar, S., Jorat, M.E., Yaacob, H., Ahsan, A., Imteaz, M.A. and Arifuzzaman (2020) ‘Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production’, Renewable and Sustainable Energy Reviews, 119, p. 109603. https://doi.org/10.1016/j.rser.2019.109603.

  13. United States Environmental Protection Agency (2021) Importance of Methane, Global Methane Initiative.

    Google Scholar 

  14. United Nations Environment Programme (2021) Methane emissions are driving climate change. Here’s how to reduce them., Climate Action.

    Google Scholar 

  15. Ministry of Environment and Water Malaysia (2020) MALAYSIA THIRD BIENNIAL UPDATE REPORT TO THE UNFCCC. Putrajaya.

    Google Scholar 

  16. World Nuclear Association (2016) Heat values of various fuels , World Nuclear Association.

    Google Scholar 

  17. Energy Commission Malaysia (2020) MALAYSIA ENERGY STATISTICS HANDBOOK 2020. Putrajaya.

    Google Scholar 

  18. Ministry of Energy, G.T. and W.M. (2017) ‘Waste’, in Green Technology Master Plan Malaysia 2017 - 2030. Putrajaya: Ministry of Energy, Green Technology and Water Malaysia, pp. 109–130.

    Google Scholar 

  19. Tippayawong, N. and Thanompongchart, P. (2010) ‘Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor’, Energy, 35(12), pp. 4531–4535. doi:https://doi.org/10.1016/J.ENERGY.2010.04.014.

    Article  Google Scholar 

  20. Islamiyah, M., Soehartanto, T., Hantoro, R. and Abdurrahman, A. (2015) ‘Water Scrubbing for Removal of CO2 (Carbon Dioxide) and H2S (Hydrogen Sulfide) in Biogas from Manure’, KnE Energy, 2(2), p. 126. doi:https://doi.org/10.18502/ken.v2i2.367.

    Article  Google Scholar 

  21. Choong, Y.Y., Chou, K.W. and Norli, I. (2018) ‘Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review’, Renewable and Sustainable Energy Reviews, 82, pp. 2993–3006. doi:https://doi.org/10.1016/J.RSER.2017.10.036.

    Article  Google Scholar 

  22. Anderson, K., Sallis, P. and Uyanik, S. (2003) ‘Anaerobic treatment processes’, Handbook of Water and Wastewater Microbiology, pp. 391–426. https://doi.org/10.1016/B978-012470100-7/50025-X.

  23. McCarty, P.L. (1964) ‘Anaerobic Waste Treatment Fundamentals’, Public Works, 95, pp. 91–94.

    Google Scholar 

  24. Akhbari, A., Kutty, P.K., Chuen, O.C. and Ibrahim, S. (2020) ‘A study of palm oil mill processing and environmental assessment of palm oil mill effluent treatment’, Environmental Engineering Research, 25(2), pp. 212–221. doi:https://doi.org/10.4491/EER.2018.452.

    Article  Google Scholar 

  25. Poh, P.E. and Chong, M.F. (2009) ‘Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment’, Bioresource Technology, 100(1), pp. 1–9. doi:https://doi.org/10.1016/J.BIORTECH.2008.06.022.

    Article  Google Scholar 

  26. Singkhala, A., Mamimin, C., Reungsang, A. and O-Thong, S. (2021) ‘Enhancement of Thermophilic Biogas Production from Palm Oil Mill Effluent by pH Adjustment and Effluent Recycling’. doi:https://doi.org/10.3390/pr9050878.

  27. Cioabla, A.E., Ionel, I., Dumitrel, G.A. and Popescu, F. (2012) ‘Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues’, Biotechnology for Biofuels, 5(1), pp. 1–9. doi:https://doi.org/10.1186/1754-6834-5-39/FIGURES/9.

    Article  Google Scholar 

  28. Jayaraj, S., Deepanraj, B. and Velmurugan, S. (2014) ‘STUDY ON THE EFFECT OF pH ON BIOGAS PRODUCTION FROM FOOD WASTE BY ANAEROBIC DIGESTION Solar heat pumps View project Domestic refrigerators View project’, International Green Energy Confrence, 5(August), pp. 799–803.

    Google Scholar 

  29. Vikrant, U.D., Ajit, C.C. and Yogesh, V.A. (2015) ‘Temperature, pH and loading rate effect on biogas generation from domestic waste’, 2014 International Conference on Advances in Engineering and Technology, ICAET 2014 [Preprint]. doi:https://doi.org/10.1109/ICAET.2014.7105292.

  30. Chin, K.K. and Wong, K.K. (1983) ‘Thermophilic anaerobic digestion of palm oil mill effluent’, Water Research, 17(9), pp. 993–995. doi:https://doi.org/10.1016/0043-1354(83)90039-8.

    Article  Google Scholar 

  31. Kim, S.H., Choi, S.M., Ju, H.J. and Jung, J.Y. (2013) ‘Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches’, Environmental technology, 34(13–16), pp. 2163–2170. doi:https://doi.org/10.1080/09593330.2013.826253.

    Article  Google Scholar 

  32. Zinder, S.H., Anguish, T. and Cardwell, S.C. (1984) ‘Effects of Temperature on Methanogenesis in a Thermophilic (58°C) Anaerobic Digestor’, Applied and Environmental Microbiology, 47(4), p. 808. doi:https://doi.org/10.1128/AEM.47.4.808-813.1984.

    Article  Google Scholar 

  33. Wu, J., Liu, Q., Feng, B., Kong, Z., Jiang, B. and Li, Y.Y. (2019) ‘Temperature effects on the methanogenesis enhancement and sulfidogenesis suppression in the UASB treatment of sulfate-rich methanol wastewater’, International Biodeterioration & Biodegradation, 142, pp. 182–190. doi:https://doi.org/10.1016/J.IBIOD.2019.05.013.

    Article  Google Scholar 

  34. Kumar, R. and Kumar, A. (2005) ‘WATER ANALYSIS | Biochemical Oxygen Demand’, in Worsfold, P., Townshend, A., and Poole, C.B.T.-E. of A.S. (Second E. (eds) Encyclopedia of Analytical Science. Oxford: Elsevier, pp. 315–324. doi:https://doi.org/10.1016/B0-12-369397-7/00662-2.

  35. IPCC (2019) ‘Wastewater Treatment and Discharge’, in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Bangkok, Thailand: IPCC.

    Google Scholar 

  36. Utami, I., Redjeki, S., Astuti, D.H. and Sani (2016) ‘Biogas Production and Removal COD – BOD and TSS from Wastewater Industrial Alcohol (Vinasse) by Modified UASB Bioreactor’, MATEC Web of Conferences, 58, p. 01005. doi:https://doi.org/10.1051/MATECCONF/20165801005

  37. ICF (2019) USER’S GUIDE FOR ESTIMATING METHANE AND NITROUS OXIDE EMISSIONS FROM WASTEWATER USING THE STATE INVENTORY TOOL. U.S. Environmental Protection Agency.

    Google Scholar 

  38. Putro, L.H.S. (2022) ‘Emissions of CH4 and CO2 from wastewater of palm oil mills: A real contribution to increase the greenhouse gas and its potential as renewable energy sources’, Environment and Natural Resources Journal, 20(1), pp. 61–72. doi:https://doi.org/10.32526/ENNRJ/20/202100149.

    Article  Google Scholar 

  39. Xu, Y., Jiang, Y., Chen, Y., Zhu, S. and Shen, S. (2014) ‘Hydrogen Production and Wastewater Treatment in a Microbial Electrolysis Cell with a Biocathode’, Water Environment Research, 86(7), pp. 649–653. doi:https://doi.org/10.2175/106143014x13975035525500.

    Article  Google Scholar 

  40. Ismail, A.F., Khulbe, K.C. and Matsuura, T. (2019) ‘RO Membrane Fouling’, in Reverse Osmosis. Elsevier, pp. 189–220. doi:https://doi.org/10.1016/B978-0-12-811468-1.00008-6.

  41. Wang, Z., Jiang, Y., Wang, S., Zhang, Y., Hu, Y., Hu, Z. hu, Wu, G. and Zhan, X. (2020) ‘Impact of total solids content on anaerobic co-digestion of pig manure and food waste: Insights into shifting of the methanogenic pathway’, Waste Management, 114, pp. 96–106. doi:https://doi.org/10.1016/J.WASMAN.2020.06.048.

  42. Yi, J., Dong, B., Jin, J. and Dai, X. (2014) ‘Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis’, PLOS ONE, 9(7), p. e102548. doi:https://doi.org/10.1371/JOURNAL.PONE.0102548.

    Article  Google Scholar 

  43. Yan, J., Zhao, Yehua, He, H., Cai, Y., Zhao, Yubin, Wang, H., Zhu, W., Yuan, X. and Cui, Z. (2022) ‘Anaerobic co-digestion of dairy manure and maize stover with different total solids content: From the characteristics of digestion to economic evaluation’, Journal of Environmental Chemical Engineering, 10(3), p. 107602. doi:https://doi.org/10.1016/J.JECE.2022.107602.

    Article  Google Scholar 

  44. Bujoczek, G., Oleszkiewicz, J., Sparling, R. and Cenkowski, S. (2000) ‘High solid anaerobic digestion of chicken manure’, Journal of Agricultural and Engineering Research, 76(1), pp. 51–60. doi:https://doi.org/10.1006/JAER.2000.0529.

    Article  Google Scholar 

  45. Budiyono, B., Syaichurrozi, I., Suhirman, S., Hidayat, T. and Jayanudin, J. (2021) ‘Experiment and Modeling to Evaluate the Effectof Total Solid on Biogas Production fromthe Anaerobic Co-Digestion of Tofu LiquidWaste and Rice Straw’, Polish Journal of Environmental Studies, 30(4), pp. 3489–3496. doi:https://doi.org/10.15244/PJOES/127277.

    Article  Google Scholar 

  46. Panico, A., D’Antonio, G., Esposito, G., Frunzo, L., Iodice, P. and Pirozzi, F. (2014) ‘The effect of substrate-bulk interaction on hydrolysis modeling in anaerobic digestion process’, Sustainability (Switzerland), 6(12), pp. 8348–8363. doi:https://doi.org/10.3390/SU6128348.

    Article  Google Scholar 

  47. Dong, R., Qiao, W., Guo, J. and Sun, H. (2022) ‘Manure treatment and recycling technologies’, Circular Economy and Sustainability: Volume 2: Environmental Engineering, pp. 161–180. doi:https://doi.org/10.1016/B978-0-12-821664-4.00009-1.

  48. David, B., Federico, B., Cristina, C., Marco, G., Federico, M. and Paolo, P. (2019) ‘Biohythane Production From Food Wastes’, in Biohydrogen. 2nd edn. Elsevier, pp. 347–368. doi:https://doi.org/10.1016/B978-0-444-64203-5.00013-7.

  49. Gaby, J.C., Zamanzadeh, M. and Horn, S.J. (2017) ‘The effect of temperature and retention time on methane production and microbial community composition in staged anaerobic digesters fed with food waste’, Biotechnology for Biofuels, 10(1), pp. 1–13. doi:https://doi.org/10.1186/S13068-017-0989-4/FIGURES/5.

    Article  Google Scholar 

  50. Chen, S., Xie, J. and Wen, Z. (2021) ‘Chapter Four - Microalgae-based wastewater treatment and utilization of microalgae biomass’, in Li, Y. and Zhou, W.B.T.-A. in B. (eds). Elsevier, pp. 165–198. doi:https://doi.org/10.1016/bs.aibe.2021.05.002.

  51. Shi, X.S., Dong, J.J., Yu, J.H., Yin, H., Hu, S.M., Huang, S.X. and Yuan, X.Z. (2017) ‘Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors’, BioMed Research International, 2017https://doi.org/10.1155/2017/2457805

  52. Gautam, R., Nayak, J.K., Daverey, A. and Ghosh, U.K. (2022) ‘Emerging sustainable opportunities for waste to bioenergy: an overview’, Waste-to-Energy Approaches Towards Zero Waste, pp. 1–55. doi:https://doi.org/10.1016/B978-0-323-85387-3.00001-X.

  53. Jung, S.P. and Pandit, S. (2019) ‘Chapter 3.1 - Important Factors Influencing Microbial Fuel Cell Performance’, in Mohan, S.V., Varjani, S., and Pandey, A.B.T.-M.E.T. (eds) Biomass, Biofuels and Biochemicals. Elsevier, pp. 377–406. doi:https://doi.org/10.1016/B978-0-444-64052-9.00015-7.

  54. Grangeiro, L.C., Almeida, S.G.C. de, Mello, B.S. de, Fuess, L.T., Sarti, A. and Dussán, K.J. (2019) ‘New trends in biogas production and utilization’, Sustainable Bioenergy: Advances and Impacts, pp. 199–223. doi:https://doi.org/10.1016/B978-0-12-817654-2.00007-1.

  55. Liu, C., Wang, W., Anwar, N., Ma, Z., Liu, G. and Zhang, R. (2017) ‘Effect of Organic Loading Rate on Anaerobic Digestion of Food Waste under Mesophilic and Thermophilic Conditions’, Energy and Fuels, 31(3), pp. 2976–2984. doi:https://doi.org/10.1021/ACS.ENERGYFUELS.7B00018.

    Article  Google Scholar 

  56. Orhorhoro, E.K., Ebunilo, P.O. and Sadjere, G.E. (2018) ‘Effect of organic loading rate (OLR) on biogas yield using a single and three-stages continuous anaerobic digestion reactors’, International Journal of Engineering Research in Africa, 39, pp. 147–155. doi:https://doi.org/10.4028/WWW.SCIENTIFIC.NET/JERA.39.147.

    Article  Google Scholar 

  57. Meegoda, J.N., Li, B., Patel, K. and Wang, L.B. (2018) ‘A review of the processes, parameters, and optimization of anaerobic digestion’, International Journal of Environmental Research and Public Health, 15(10). doi:https://doi.org/10.3390/ijerph15102224.

  58. Han, J., Kamber, M. and Pei, J. (2012) ‘Data Preprocessing’, in Data Mining. Third. Elsevier, pp. 83–124. doi:https://doi.org/10.1016/B978-0-12-381479-1.00003-4.

  59. Jayalakshmi, T. and Santhakumaran, A. (2011) ‘Statistical Normalization and Back Propagationfor Classification’, International Journal of Computer Theory and Engineering, pp. 89–93. doi:https://doi.org/10.7763/IJCTE.2011.V3.288.

  60. Nugaliyadde, A., Wong, K.W., Sohel, F. and Xie, H. (2017) ‘Reinforced Memory Network for Question Answering’, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 482–490. doi:https://doi.org/10.1007/978-3-319-70096-0_50.

  61. Kuncheva, L.I. and Whitaker, C.J. (2015) ‘Pattern Recognition and Classification’, Wiley StatsRef: Statistics Reference Online, pp. 1–7. doi:https://doi.org/10.1002/9781118445112.STAT06503.PUB2.

  62. Liu, Y., Traskin, M., Lorch, S.A., George, E.I. and Small, D. (2015) ‘Ensemble of trees approaches to risk adjustment for evaluating a hospital’s performance’, Health Care Management Science, 18(1), pp. 58–66. doi:https://doi.org/10.1007/S10729-014-9272-4/TABLES/7.

    Article  Google Scholar 

  63. Cai, J., Luo, J., Wang, S. and Yang, S. (2018) ‘Feature selection in machine learning: A new perspective’, Neurocomputing, 300, pp. 70–79. doi:https://doi.org/10.1016/J.NEUCOM.2017.11.077.

    Article  Google Scholar 

  64. Miao, J. and Niu, L. (2016) ‘A Survey on Feature Selection’, Procedia Computer Science, 91, pp. 919–926. doi:https://doi.org/10.1016/J.PROCS.2016.07.111.

    Article  Google Scholar 

  65. Altmann, A., Toloşi, L., Sander, O. and Lengauer, T. (2010) ‘Permutation importance: a corrected feature importance measure’, Bioinformatics, 26(10), pp. 1340–1347. doi:https://doi.org/10.1093/BIOINFORMATICS/BTQ134.

    Article  Google Scholar 

  66. Arelli, V., Juntupally, S., Begum, S. and Anupoju, G.R. (2022) ‘Solid state anaerobic digestion of organic waste for the generation of biogas and bio manure’, in Advanced Organic Waste Management: Sustainable Practices and Approaches. Elsevier, pp. 247–277. https://doi.org/10.1016/B978-0-323-85792-5.00023-X.

  67. Kuhn, M. and Johnson, K. (2019) ‘Feature Selection Overview’, in Feature Engineering and Selection : A Practical Approach for Predictive Models. Florida: CRC Press LLC, pp. 227–240.

    Chapter  Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Nottingham Malaysia for providing us with the software support required to conduct this research. We would also like to show appreciation for the engineers and managers of Lepar Hilir Palm Oil Mill, Adela Palm Oil Mill, Keratong Estate Oil Palm Mill and Felda Lok Heng Palm Oil Mill for providing the dataset required for this study.

Funding

This research received no external funding.

Data Availability Statement

Data will be made available upon request.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Kazemi Yazdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ragu, K. et al. (2023). Feature Importance Study for Biogas Production from POME Treatment Plants Using Out-of-Bag Permutation. In: Daimi, K., Alsadoon, A., Coelho, L. (eds) Cutting Edge Applications of Computational Intelligence Tools and Techniques. Studies in Computational Intelligence, vol 1118. Springer, Cham. https://doi.org/10.1007/978-3-031-44127-1_7

Download citation

Publish with us

Policies and ethics