Skip to main content

Solar Energy Assessment: From Rooftop Extraction to Identifying Utilizable Areas

  • Conference paper
  • First Online:
Geographical Information Systems Theory, Applications and Management (GISTAM 2021, GISTAM 2022)

Abstract

Rooftop photovoltaics have been acknowledged as a critical component in cities’ efforts to reduce their reliance on fossil fuels and move towards energy sustainability. Identifying rooftop areas suitable for installing rooftop photovoltaics-referred to as utilizable areas-is essential for effective energy planning and developing policies related to renewable energies. Utilizable areas are greatly affected by the size, shape, superstructures of rooftops, and shadow effects. This study estimates utilizable areas and solar energy potential of rooftops by considering the mentioned factors. First, rooftops are extracted from LiDAR data by training PointNet++, a neural network architecture for processing 3D point clouds. The second step involves extracting planar segments of rooftops using a combination of clustering and region growing. Finally, utilizable areas of planar segments are identified by removing areas that do not have a suitable size and do not receive sufficient solar irradiation. Additionally, in this step, areas reserved for accessibility to photovoltaics are removed. According to the experimental results, the methods have a high success rate in rooftop extraction, plane segmentation, and, consequently, estimating utilizable areas for photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akkiraju, N., Edelsbrunner, H., Facello, M., Fu, P., Mücke, P., E., Varela, C.: Alpha shapes: definition and software. In: Proceedings on International Computational Geometry Software Workshop, Minneapolis (1995)

    Google Scholar 

  2. Aslani, M.: Computational and spatial analyses of rooftops for urban solar energy planning. Ph.D. thesis, Gävle University (2022)

    Google Scholar 

  3. Aslani, M., Seipel, S.: A fast instance selection method for support vector machines in building extraction. Appl. Soft Comput. 97, 106716 (2020)

    Article  Google Scholar 

  4. Aslani, M., Seipel, S.: Efficient and decision boundary aware instance selection for support vector machines. Inf. Sci. 577, 579–598 (2021)

    Article  MathSciNet  Google Scholar 

  5. Aslani, M., Seipel, S.: A spatially detailed approach to the assessment of rooftop solar energy potential based on LiDAR data. In: The 8th International Conference on Geographical Information Systems Theory, Applications and Management, pp. 56–63. SCITEPRESS (2022)

    Google Scholar 

  6. Aslani, M., Seipel, S.: Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment. Appl. Energy 306(Part A), 118033 (2022)

    Google Scholar 

  7. Benciolini, B., Ruggiero, V., Vitti, A., Zanetti, M.: Roof planes detection via a second-order variational model. ISPRS J. Photogram. Remote Sens. 138, 101–120 (2018)

    Article  Google Scholar 

  8. Bódis, K., Kougias, I., Jäger-Waldau, A., Taylor, N., Szabó, S.: A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 114, 109309 (2019)

    Article  Google Scholar 

  9. Byrne, J., Taminiau, J., Kurdgelashvili, L., Kim, K.N.: A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renew. Sustain. Energy Rev. 41, 830–844 (2015)

    Article  Google Scholar 

  10. Chen, D., Zhang, L., Mathiopoulos, P.T., Huang, X.: A methodology for automated segmentation and reconstruction of urban 3-D buildings from ALS point clouds. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 7(10), 4199–4217 (2014)

    Article  Google Scholar 

  11. Chow, A., Li, S., Fung, A.S.: Modeling urban solar energy with high spatiotemporal resolution: a case study in Toronto, Canada. Int. J. Green Energy 13(11), 1090–1101 (2016)

    Google Scholar 

  12. Deschaud, J.E., Goulette, F.: A fast and accurate plane detection algorithm for large noisy point clouds using filtered normals and voxel growing. In: 3DPVT. Paris, France (2010)

    Google Scholar 

  13. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: the Second International Conference on Knowledge Discovery in Databases and Data Mining, pp. 226–231. AAAI Press, Portland (1996)

    Google Scholar 

  14. Fu, P., Rich, P.M.: The Solar Analyst 1.0 Manual. Technical Report, Helios Environmental Modeling Institute (HEMI), USA (2000)

    Google Scholar 

  15. Gassar, A.A.A., Cha, S.H.: Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales. Appl. Energy 291, 116817 (2021)

    Article  Google Scholar 

  16. Gilani, S.A.N., Awrangjeb, M., Lu, G.: segmentation of airborne point cloud data for automatic building roof extraction. GISci. Remote Sens. 55(1), 63–89 (2018)

    Google Scholar 

  17. Gribov, A.: Optimal compression of a polyline while aligning to preferred directions. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 1, pp. 98–102 (2019). https://doi.org/10.1109/ICDARW.2019.00022

  18. Huang, Y., Chen, Z., Wu, B., Chen, L., Mao, W., Zhao, F., Wu, J., Wu, J., Yu, B.: Estimating roof solar energy potential in the downtown area using a GPU-accelerated solar radiation model and airborne LiDAR data. Remote Sens. 7(12), 17212–17233 (2015)

    Article  Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR), Ithaca, San Diego (2015)

    Google Scholar 

  20. Lingfors, D., Bright, J.M., Engerer, N.A., Ahlberg, J., Killinger, S., Widén, J.: Comparing the capability of low- and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Appl. Energy 205, 1216–1230 (2017)

    Article  Google Scholar 

  21. Lodha, S., Fitzpatrick, D., Helmbold, D.: Aerial lidar data classification using AdaBoost. In: Proceedings of the International Conference on 3-D Digital Imaging and Modeling, pp. 435–442. IEEE, Montreal, Canada (2007)

    Google Scholar 

  22. Lukač, N., Špelič, D., Štumberger, G., Žalik, B.: Optimisation for large-scale photovoltaic arrays’ placement based on light detection and ranging data. Appl. Energy 263, 114592 (2020)

    Article  Google Scholar 

  23. Mainzer, K., Killinger, S., McKenna, R., Fichtner, W.: Assessment of rooftop photovoltaic potentials at the urban level using publicly available geodata and image recognition techniques. Solar Energy 155, 561–573 (2017)

    Article  Google Scholar 

  24. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge, Massachusetts (2012)

    MATH  Google Scholar 

  25. Nelson, J.R., Grubesic, T.H.: The use of LiDAR versus unmanned aerial systems (UAS) to assess rooftop solar energy potential. Sustain. Cities Soc. 61, 102353 (2020)

    Article  Google Scholar 

  26. Pavlidis, N.G., Hofmeyr, D.P., Tasoulis, S.K.: Minimum density hyperplanes. J. Mach. Learn. Res. 17(156), 1–33 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), California (2017)

    Google Scholar 

  28. Rich, P., Dubayah, R., Hetrick, W., Saving, S.: Using viewshed models to calculate intercepted solar radiation: applications in ecology. In: American Society for Photogrammetry and Remote Sensing Technical Papers, pp. 524–529 (1994)

    Google Scholar 

  29. Romero Rodríguez, L., Duminil, E., Sánchez Ramos, J., Eicker, U.: Assessment of the photovoltaic potential at urban level based on 3D city models: a case study and new methodological approach. Solar Energy 146, 264–275 (2017)

    Article  Google Scholar 

  30. Rusu, R.B.: Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. Ph.D. thesis, Technical University of Munich, Munich, Germany (2009)

    Google Scholar 

  31. Sampath, A., Shan, J.: Segmentation and reconstruction of polyhedral building roofs from aerial LiDAR point clouds. IEEE Trans. Geosci. Remote Sens. 48(3), 1554–1567 (2010)

    Article  Google Scholar 

  32. Schallenberg-Rodríguez, J.: Photovoltaic techno-economical potential on roofs in regions and islands: the case of the canary islands. Methodological review and methodology proposal. Renew. Sustain. Energy Rev. 20, 219–239 (2013)

    Google Scholar 

  33. Shin, Y.H., Son, K.W., Lee, D.C.: semantic segmentation and building extraction from airborne LiDAR data with multiple return using PointNet++. Appl. Sci. 12(4), 1975 (2022)

    Article  Google Scholar 

  34. Sundararajan, D.: Digital Image Processing A Signal Processing and Algorithmic Approach. Springer, Singapore (2017)

    Book  MATH  Google Scholar 

  35. Thai, C., Brouwer, J.: Challenges estimating distributed solar potential with utilization factors: California universities case study. Appl. Energy 282, 116209 (2021)

    Article  Google Scholar 

  36. Thebault, M., Clivillé, V., Berrah, L., Desthieux, G.: Multicriteria roof sorting for the integration of photovoltaic systems in urban environments. Sustain. Cities Soc. 60, 102259 (2020)

    Article  Google Scholar 

  37. Varney, N., Asari, V.K., Graehling, Q.: DALES: a large-scale aerial LiDAR data set for semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 717–726 (2020). https://doi.org/10.1109/CVPRW50498.2020.00101

  38. Xie, Y., Tian, J., Zhu, X.X.: Linking points with labels in 3d: a review of point cloud semantic segmentation. IEEE Geosci. Remote Sens. Mag. 8(4), 38–59 (2020)

    Article  Google Scholar 

  39. Xu, Y., Stilla, U.: Toward building and civil infrastructure reconstruction from point clouds: a review on data and key techniques. IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens. 14, 2857–2885 (2021)

    Article  Google Scholar 

  40. Yildirim, D., Büyüksalih, G., ahin, A.D.: Rooftop photovoltaic potential in Istanbul: calculations based on LiDAR data, measurements and verifications. Appl. Energy 304, 117743 (2021)

    Google Scholar 

  41. Zheng, Y., Weng, Q.: Model-driven reconstruction of 3-d buildings using LiDAR data. IEEE Geosci. Remote Sens. Lett. 12(7), 1541–1545 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Aslani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aslani, M., Seipel, S. (2023). Solar Energy Assessment: From Rooftop Extraction to Identifying Utilizable Areas. In: Grueau, C., Laurini, R., Ragia, L. (eds) Geographical Information Systems Theory, Applications and Management. GISTAM GISTAM 2021 2022. Communications in Computer and Information Science, vol 1908. Springer, Cham. https://doi.org/10.1007/978-3-031-44112-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44112-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44111-0

  • Online ISBN: 978-3-031-44112-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics