Skip to main content

iPDP: On Partial Dependence Plots in Dynamic Modeling Scenarios

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2023)

Abstract

Post-hoc explanation techniques such as the well-established partial dependence plot (PDP), which investigates feature dependencies, are used in explainable artificial intelligence (XAI) to understand black-box machine learning models. While many real-world applications require dynamic models that constantly adapt over time and react to changes in the underlying distribution, XAI, so far, has primarily considered static learning environments, where models are trained in a batch mode and remain unchanged. We thus propose a novel model-agnostic XAI framework called incremental PDP (iPDP) that extends on the PDP to extract time-dependent feature effects in non-stationary learning environments. We formally analyze iPDP and show that it approximates a time-dependent variant of the PDP that properly reacts to real and virtual concept drift. The time-sensitivity of iPDP is controlled by a single smoothing parameter, which directly corresponds to the variance and the approximation error of iPDP in a static learning environment. We illustrate the efficacy of iPDP by showcasing an example application for drift detection and conducting multiple experiments on real-world and synthetic data sets and streams.

M. Muschalik and F. Fumagalli—denotes equal contribution.

We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation): TRR 318/1 2021 - 438445824.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    iPDP is part of the iXAI framework at https://github.com/mmschlk/iXAI.

  2. 2.

    The debiasing factor ensures that for a constant sequence the exponential moving average remains constant and will be theoretically justified in Sect. 3.3.

  3. 3.

    All experiments are based on sklearn, pytorch and the river online learning framework. All datasets are publicly available and described in the supplement C.1. The code to reproduce the experiments can be found at https://github.com/mmschlk/iPDP-On-Partial-Dependence-Plots-in-Dynamic-Modeling-Scenarios.

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052

    Article  Google Scholar 

  2. Agrawal, R., Imielinski, T., Swami, A.: Database mining: a performance perspective. IEEE Trans. Knowl. Data Eng. 5(6), 914–925 (1993). https://doi.org/10.1109/69.250074

    Article  Google Scholar 

  3. Apley, D.W., Zhu, J.: Visualizing the effects of predictor variables in black box supervised learning models. J. R. Stat. Soc. Ser. B Stat Methodol. 82(4), 1059–1086 (2020). https://doi.org/10.1111/rssb.12377

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Haim, Y., Tom-Tov, E.: A streaming parallel decision tree algorithm. J. Mach. Learn. Res. 11, 849–872 (2010). https://doi.org/10.5555/1756006.1756034

    Article  MathSciNet  MATH  Google Scholar 

  5. Berk, R.A., Bleich, J.: Statistical procedures for forecasting criminal behavior: a comparative assessment. Criminol. Public Policy 12, 513 (2013)

    Article  Google Scholar 

  6. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the Seventh SIAM International Conference on Data Mining (SIAM 2007), pp. 443–448 (2007). https://doi.org/10.1137/1.9781611972771.42

  7. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_22

    Chapter  Google Scholar 

  8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  9. Britton, M.: VINE: visualizing statistical interactions in black box models. CoRR abs/1904.00561 (2019). http://arxiv.org/abs/1904.00561

  10. Cassidy, A.P., Deviney, F.A.: Calculating feature importance in data streams with concept drift using online random forest. In: 2014 IEEE International Conference on Big Data (Big Data 2014), pp. 23–28 (2014). https://doi.org/10.1109/BigData.2014.7004352

  11. Clements, J.M., Xu, D., Yousefi, N., Efimov, D.: Sequential deep learning for credit risk monitoring with tabular financial data. CoRR abs/2012.15330 (2020). https://arxiv.org/abs/2012.15330

  12. Covert, I., Lundberg, S.M., Lee, S.: Understanding global feature contributions with additive importance measures. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020 (NeurIPS 2020) (2020)

    Google Scholar 

  13. Davari, N., Veloso, B., Ribeiro, R.P., Pereira, P.M., Gama, J.: Predictive maintenance based on anomaly detection using deep learning for air production unit in the railway industry. In: 8th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2021), pp. 1–10. IEEE (2021). https://doi.org/10.1109/DSAA53316.2021.9564181

  14. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD 2000), pp. 71–80 (2000). https://doi.org/10.1145/347090.347107

  15. Duckworth, C., et al.: Using explainable machine learning to characterize data drift and detect emergent health risks for emergency department admissions during COVID-19. Sci. Rep. 11(1), 23017 (2021). https://doi.org/10.1038/s41598-021-02481-y

    Article  Google Scholar 

  16. Elith, J., Leathwick, J.R., Hastie, T.: A working guide to boosted regression trees. J. Anim. Ecol. 77(4), 802–813 (2008). https://doi.org/10.1111/j.1365-2656.2008.01390.x

    Article  Google Scholar 

  17. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). http://www.jstor.org/stable/2699986

  18. Frye, C., Mijolla, D.D., Begley, T., Cowton, L., Stanley, M., Feige, I.: Shapley explainability on the data manifold. In: International Conference on Learning Representations (ICLR 2021) (2021). https://openreview.net/forum?id=OPyWRrcjVQw

  19. Fumagalli, F., Muschalik, M., Hüllermeier, E., Hammer, B.: Incremental permutation feature importance (iPFI): towards online explanations on data streams. CoRR abs/2209.01939 (2022). https://doi.org/10.48550/arXiv.2209.01939

  20. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014). https://doi.org/10.1145/2523813

  21. García-Martín, E., Rodrigues, C.F., Riley, G., Grahn, H.: Estimation of energy consumption in machine learning. J. Parallel Distrib. Comput. 134, 75–88 (2019). https://doi.org/10.1016/j.jpdc.2019.07.007

    Article  Google Scholar 

  22. Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation. J. Comput. Graph. Stat. 24(1), 44–65 (2015). https://doi.org/10.1080/10618600.2014.907095

    Article  MathSciNet  Google Scholar 

  23. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classification. Mach. Learn. 106(9), 1469–1495 (2017)

    Article  MathSciNet  Google Scholar 

  24. Gomes, H.M., Mello, R.F.D., Pfahringer, B., Bifet, A.: Feature scoring using tree-based ensembles for evolving data streams. In: 2019 IEEE International Conference on Big Data (Big Data 2019), pp. 761–769 (2019)

    Google Scholar 

  25. Greenwell, B.M., Boehmke, B.C., McCarthy, A.J.: A simple and effective model-based variable importance measure. CoRR abs/1805.04755 (2018). http://arxiv.org/abs/1805.04755

  26. Grömping, U.: Model-agnostic effects plots for interpreting machine learning models. In: Reports in Mathematics, Physics and Chemistry: Department II. Beuth University of Applied Sciences Berlin (2020). http://www1.beuth-hochschule.de/FB_II/reports/

  27. Harries, M.: SPLICE-2 comparative evaluation: electricity pricing. Technical report, The University of South Wales (1999)

    Google Scholar 

  28. Haug, J., Braun, A., Zürn, S., Kasneci, G.: Change detection for local explainability in evolving data streams. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKIM 2022), pp. 706–716. ACM (2022). https://doi.org/10.1145/3511808.3557257

  29. Herbinger, J., Bischl, B., Casalicchio, G.: REPID: regional effect plots with implicit interaction detection. In: International Conference on Artificial Intelligence and Statistics, (AISTATS 2022). Proceedings of Machine Learning Research, vol. 151, pp. 10209–10233. PMLR (2022). https://proceedings.mlr.press/v151/herbinger22a.html

  30. Hinder, F., Vaquet, V., Brinkrolf, J., Hammer, B.: Model based explanations of concept drift. CoRR abs/2303.09331 (2023). https://doi.org/10.48550/arXiv.2303.09331

  31. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD 2001), pp. 97–106 (2001). https://doi.org/10.1145/502512.502529

  32. Janzing, D., Minorics, L., Blöbaum, P.: Feature relevance quantification in explainable AI: a causal problem. In: International Conference on Artificial Intelligence and Statistics (AISTATS 2020). Proceedings of Machine Learning Research, vol. 108, pp. 2907–2916. PMLR (2020). http://proceedings.mlr.press/v108/janzing20a

  33. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: a review and comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018). https://doi.org/10.1016/j.neucom.2017.06.084

    Article  Google Scholar 

  34. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 2346–2363 (2018). https://doi.org/10.1109/TKDE.2018.2876857

  35. Lundberg, S.M., Erion, G.G., Lee, S.: Consistent individualized feature attribution for tree ensembles. CoRR abs/1802.03888 (2018). http://arxiv.org/abs/1802.03888

  36. Molnar, C.: Interpretable Machine Learning, 2 edn. (2022). Lulu.com, https://christophm.github.io/interpretable-ml-book

  37. Molnar, C., König, G., Bischl, B., Casalicchio, G.: Model-agnostic feature importance and effects with dependent features - a conditional subgroup approach. CoRR abs/2006.04628 (2020). https://arxiv.org/abs/2006.04628

  38. Molnar, C., et al.: General pitfalls of model-agnostic interpretation methods for machine learning models. In: Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.R., Samek, W. (eds.) xxAI 2020. LNCS, vol. 13200, pp. 39–68. Springer, Cham (2020). https://doi.org/10.1007/978-3-031-04083-2_4

    Chapter  Google Scholar 

  39. Moosbauer, J., Herbinger, J., Casalicchio, G., Lindauer, M., Bischl, B.: Explaining hyperparameter optimization via partial dependence plots. In: Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021 (NeurIPS 2021), pp. 2280–2291 (2021). https://proceedings.neurips.cc/paper/2021/hash/12ced2db6f0193dda91ba86224ea1cd8-Abstract.html

  40. Muschalik, M., Fumagalli, F., Hammer, B., Hüllermeier, E.: Agnostic explanation of model change based on feature importance. Künstliche Intell. 36(3), 211–224 (2022). https://doi.org/10.1007/s13218-022-00766-6

    Article  Google Scholar 

  41. Muschalik, M., Fumagalli, F., Hammer, B., Hüllermeier, E.: iSAGE: an incremental version of SAGE for online explanation on data streams. CoRR abs/2303.01181 (2023). https://doi.org/10.48550/arXiv.2303.01181

  42. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019). https://doi.org/10.1016/j.neunet.2019.01.012

    Article  Google Scholar 

  43. Rouleau, J., Gosselin, L.: Impacts of the COVID-19 lockdown on energy consumption in a Canadian social housing building. Appl. Energy 287, 116565 (2021). https://doi.org/10.1016/j.apenergy.2021.116565

    Article  Google Scholar 

  44. Susnjak, T., Maddigan, P.: Forecasting patient flows with pandemic induced concept drift using explainable machine learning. EPJ Data Sci. 12(1), 11 (2023). https://doi.org/10.1140/epjds/s13688-023-00387-5

    Article  Google Scholar 

  45. Ta, V.D., Liu, C.M., Nkabinde, G.W.: Big data stream computing in healthcare real-time analytics. In: Proceddings of International Conference on Cloud Computing and Big Data Analysis (ICCCBDA 2016), pp. 37–42 (2016). https://doi.org/10.1109/ICCCBDA.2016.7529531

  46. Zhao, X., Yang, H., Yao, Y., Qi, H., Guo, M., Su, Y.: Factors affecting traffic risks on bridge sections of freeways based on partial dependence plots. Phys. A 598, 127343 (2022). https://doi.org/10.1016/j.physa.2022.127343

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Muschalik .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 719 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muschalik, M., Fumagalli, F., Jagtani, R., Hammer, B., Hüllermeier, E. (2023). iPDP: On Partial Dependence Plots in Dynamic Modeling Scenarios. In: Longo, L. (eds) Explainable Artificial Intelligence. xAI 2023. Communications in Computer and Information Science, vol 1901. Springer, Cham. https://doi.org/10.1007/978-3-031-44064-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44064-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44063-2

  • Online ISBN: 978-3-031-44064-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics