Skip to main content

CortexMorph: Fast Cortical Thickness Estimation via Diffeomorphic Registration Using VoxelMorph

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14229))

Abstract

The thickness of the cortical band is linked to various neurological and psychiatric conditions, and is often estimated through surface-based methods such as Freesurfer in MRI studies. The DiReCT method, which calculates cortical thickness using a diffeomorphic deformation of the gray-white matter interface towards the pial surface, offers an alternative to surface-based methods. Recent studies using a synthetic cortical thickness phantom have demonstrated that the combination of DiReCT and deep-learning-based segmentation is more sensitive to subvoxel cortical thinning than Freesurfer.

While anatomical segmentation of a T1-weighted image now takes seconds, existing implementations of DiReCT rely on iterative image registration methods which can take up to an hour per volume. On the other hand, learning-based deformable image registration methods like VoxelMorph have been shown to be faster than classical methods while improving registration accuracy. This paper proposes CortexMorph, a new method that employs unsupervised deep learning to directly regress the deformation field needed for DiReCT. By combining CortexMorph with a deep-learning-based segmentation model, it is possible to estimate region-wise thickness in seconds from a T1-weighted image, while maintaining the ability to detect cortical atrophy. We validate this claim on the OASIS-3 dataset and the synthetic cortical thickness phantom of Rusak et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avants, B.B., Tustison, N.J., Wu, J., Cook, P.A., Gee, J.C.: An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9(4), 381–400 (2011). https://doi.org/10.1007/s12021-011-9109-y

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019). https://doi.org/10.1109/TMI.2019.2897538. arXiv:1809.05231

  3. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57, 226–236 (2019). https://doi.org/10.1016/j.media.2019.07.006

    Article  Google Scholar 

  4. Das, S.R., Avants, B.B., Grossman, M., Gee, J.C.: Registration based cortical thickness measurement. Neuroimage 45(3), 867–879 (2009). https://doi.org/10.1016/j.neuroimage.2008.12.016

    Article  Google Scholar 

  5. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  Google Scholar 

  6. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. 97(20), 11050–11055 (2000). https://doi.org/10.1073/pnas.200033797

    Article  Google Scholar 

  7. Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., Reuter, M.: FastSurfer - a fast and accurate deep learning based neuroimaging pipeline. NeuroImage 219, 117012 (2020). https://doi.org/10.1016/j.neuroimage.2020.117012. https://www.sciencedirect.com/science/article/pii/S1053811920304985

  8. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Isensee, F., et al.: Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 40(17), 4952–4964 (2019)

    Article  Google Scholar 

  10. Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008). https://doi.org/10.1002/jmri.21049. https://onlinelibrary.wiley.com/doi/abs/10.1002/jmri.21049

  11. McKinley, R., Rebsamen, M., Meier, R., Reyes, M., Rummel, C., Wiest, R.: Few-shot brain segmentation from weakly labeled data with deep heteroscedastic multi-task networks. arXiv preprint arXiv:1904.02436 (2019). https://arxiv.org/abs/1904.02436

  12. Rebsamen, M., Rummel, C., Reyes, M., Wiest, R., McKinley, R.: Direct cortical thickness estimation using deep learning-based anatomy segmentation and cortex parcellation. Hum. Brain Mapp. (2020). https://doi.org/10.1002/hbm.25159. https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25159

  13. Rusak, F., et al.: Quantifiable brain atrophy synthesis for benchmarking thickness estimation of cortical methods. Med. Image Anal. 82, 102576 (2022)

    Article  Google Scholar 

  14. Rusak, F., et al.: Synthetic brain MRI dataset for testing of cortical thickness estimation methods. v1. https://doi.org/10.25919/4ycc-fc11. https://data.csiro.au/collection/csiro:53241v1

  15. Tustison, N.J., et al.: The ANTs cortical thickness processing pipeline. In: Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 8672, pp. 126–129. SPIE (2013). https://doi.org/10.1117/12.2007128. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8672/86720K/The-ANTs-cortical-thickness-processing-pipeline/10.1117/12.2007128.full

  16. Tustison, N.J., et al.: The ANTsX ecosystem for quantitative biological and medical imaging. Sci. Rep. 11(1), 9068 (2021)

    Google Scholar 

  17. Vallat, R.: Pingouin: statistics in python. J. Open Source Softw. 3(31), 1026 (2018). https://doi.org/10.21105/joss.01026

  18. Zou, J., Gao, B., Song, Y., Qin, J.: A review of deep learning-based deformable medical image registration. Front. Oncol. 12, 1047215 (2022). https://doi.org/10.3389/fonc.2022.1047215. https://www.frontiersin.org/articles/10.3389/fonc.2022.1047215

Download references

Acknowledgements

This work was supported by a Freenovation grant from the Novartis Forschungsstiftung, and by the Swiss National Science Foundation (SNSF) under grant number 204593 (ScanOMetrics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard McKinley .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 712 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McKinley, R., Rummel, C. (2023). CortexMorph: Fast Cortical Thickness Estimation via Diffeomorphic Registration Using VoxelMorph. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics