Skip to main content

A Transfer Learning Approach to Localising a Deep Brain Stimulation Target

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

The ventral intermediate nucleus of thalamus (Vim) is a well-established surgical target in magnetic resonance-guided (MR-guided) surgery for the treatment of tremor. As the structure is not identifiable from conventional MR sequences, targeting the Vim has predominantly relied on standardised Vim atlases and thus fails to model individual anatomical variability. To overcome this limitation, recent studies define the Vim using its white matter connectivity with both primary motor cortex and dentate nucleus, estimated via tractography. Although successful in accounting for individual variability, these connectivity-based methods are sensitive to variations in image acquisition and processing, and require high-quality diffusion imaging techniques which are often not available in clinical contexts. Here we propose a novel transfer learning approach to accurately target the Vim particularly on clinical-quality data. The approach transfers anatomical information from publicly available high-quality datasets to a wide range of white matter connectivity features in low-quality data, to augment inference on the Vim. We demonstrate that the approach can robustly and reliably identify the Vim despite compromised data quality, and is generalisable to different datasets, outperforming previous surgical targeting methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cury, R.G., et al.: Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia. Neurology 89(13), 1416–1423 (2017)

    Article  Google Scholar 

  2. Muthuraman, M., et al.: Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference? Neuroimage 60(2), 1331–1339 (2012)

    Article  Google Scholar 

  3. Baker, K.B., et al.: Deep brain stimulation of the lateral cerebellar nucleus produces frequency-specific alterations in motor evoked potentials in the rat in vivo. Exp. Neurol. 226(2), 259–264 (2010)

    Article  Google Scholar 

  4. Dum, R.P., Strick, P.L.: An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J. Neurophysiol. 89(1), 634–639 (2003)

    Article  Google Scholar 

  5. Gallay, M.N., et al.: Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct. Funct. 212, 443–463 (2008)

    Article  Google Scholar 

  6. Darian-Smith, C., Darian-Smith, I., Cheema, S.S.: Thalamic projections to sensorimotor cortex in the macaque monkey: use of multiple retrograde fluorescent tracers. J. Comparat. Neurol. 299(1), 17–46 (1990)

    Article  Google Scholar 

  7. Calzavara, R., et al.: Neurochemical characterization of the cerebellar-recipient motor thalamic territory in the macaque monkey. Eur. J. Neurosci. 21(7), 1869–1894 (2005)

    Article  Google Scholar 

  8. McIntyre, C.C., Hahn, P.J.: Network perspectives on the mechanisms of deep brain stimulation. Neurobiol. Dis. 38(3), 329–337 (2010)

    Article  Google Scholar 

  9. Helmich, R.C., et al.: Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 135(11), 3206–3226 (2012)

    Article  Google Scholar 

  10. Hirai, T., Jones, E.G.: A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res. Rev. 14(1), 1–34 (1989)

    Article  Google Scholar 

  11. Akram, H., et al.: Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage: Clin. 18, 130–142 (2018)

    Article  Google Scholar 

  12. Su, J.H., et al.: Improved Vim targeting for focused ultrasound ablation treatment of essential tremor: a probabilistic and patient-specific approach. Hum. Brain Mapp. 41(17), 4769–4788 (2020)

    Article  Google Scholar 

  13. Elias, G.J.B., et al.: Probabilistic mapping of deep brain stimulation: insights from 15 years of therapy. Ann. Neurol. 89(3), 426–443 (2021)

    Article  Google Scholar 

  14. Morel, A., Magnin, M., Jeanmonod, D.: Multiarchitectonic and stereotactic atlas of the human thalamus. J. Comparat. Neurol. 387(4), 588–630 (1997)

    Article  Google Scholar 

  15. Ferreira, F., et al.: Ventralis intermedius nucleus anatomical variability assessment by MRI structural connectivity. NeuroImage 238, 118231 (2021)

    Article  Google Scholar 

  16. Bertino, S., et al.: Ventral intermediate nucleus structural connectivity-derived segmentation: anatomical reliability and variability. Neuroimage 243, 118519 (2021)

    Article  Google Scholar 

  17. Sotiropoulos, S.N., et al.: Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 80, 125–143 (2013)

    Article  Google Scholar 

  18. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  19. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  20. Andersson, J.L.R., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2), 870–888 (2003)

    Article  Google Scholar 

  21. Andersson, J.L.R., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016)

    Article  Google Scholar 

  22. Jenkinson, M., et al.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  23. Jenkinson, M., et al.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  24. Miller, K.L., et al.: Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19(11), 1523–1536 (2016)

    Article  Google Scholar 

  25. Alfaro-Almagro, F., et al.: Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166, 400–424 (2018)

    Article  Google Scholar 

  26. Destrieux, C., et al.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15 (2010)

    Article  Google Scholar 

  27. Warrington, S., et al.: XTRACT-standardised protocols for automated tractography in the human and macaque brain. Neuroimage 217, 116923 (2020)

    Article  Google Scholar 

  28. Tang, Y., et al.: A probabilistic atlas of human brainstem pathways based on connectome imaging data. Neuroimage 169, 227–239 (2018)

    Article  Google Scholar 

  29. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  30. LNCS Homepage. http://www.springer.com/lncs. Accessed 4 Oct 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Qiu Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7244 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, YQ., Akram, H., Smith, S., Jbabdi, S. (2023). A Transfer Learning Approach to Localising a Deep Brain Stimulation Target. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43996-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43995-7

  • Online ISBN: 978-3-031-43996-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics