Skip to main content

Overall Survival Time Prediction of Glioblastoma on Preoperative MRI Using Lesion Network Mapping

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14227))

  • 2618 Accesses

Abstract

Glioblastoma (GBM) is the most aggressive malignant brain tumor. Its poor survival rate highlights the pressing need to adopt easily accessible, non-invasive neuroimaging techniques to preoperatively predict GBM survival, which can benefit treatment planning and patient care. MRI and MRI-based radiomics, although effective for survival prediction, do not consider brain’s functional alternations caused by tumors, which are clinically significant for guiding therapeutic strategies aimed at inhibiting tumor-brain communication. In this paper, we propose an augmented lesion network mapping (A-LNM) based survival prediction framework, where a novel neuroimaging feature family, called functional lesion network (FLN) maps generated by the A-LNM, is achieved from patients’ structural MRI, and thus are more readily available than functional connections measured with functional MRI of patients. Specifically, for each patient, the A-LNM first estimates functional disconnection (FDC) maps by embedding the lesion (the whole tumor) into an atlas of functional connections in a large cohort of healthy subjects, and many FLN maps are then obtained by averaging subsets of the FDC maps such that we can artificially boost data volume (i.e., FLN maps), which helps to mitigate over-fitting and improve survival prediction performance when learning a deep neural network from a small sized dataset. The augmented FLN maps are finally fed to a 3D ResNet-based backbone followed by the average pooling operation and fully-connected layers for GBM survival prediction. Experimental results on the BraTS 2020 training dataset demonstrate the effectiveness of our proposed framework with the A-LNM derived FLN maps for GBM survival classification. Moreover, we identify the survival-relevant brain regions that can be traced back with biological interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adeberg, S., Bostel, T., König, L., Welzel, T., Debus, J., Combs, S.E.: A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Radiat. Oncol. 9, 1–6 (2014)

    Article  Google Scholar 

  2. Anand, V.K., et al.: Brain tumor segmentation and survival prediction using automatic hard mining in 3D CNN architecture. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 310–319. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_27

    Chapter  Google Scholar 

  3. Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ants). Insight J 2(365), 1–35 (2009)

    Google Scholar 

  4. Bowren, M., Jr., et al.: Post-stroke outcomes predicted from multivariate lesion-behaviour and lesion network mapping. Brain 145(4), 1338–1353 (2022)

    Article  Google Scholar 

  5. Buckner, R.L., Roffman, J.L., Smoller, J.W.: Brain Genomics Superstruct Project (GSP) (2014). https://doi.org/10.7910/DVN/25833,https://doi.org/10.7910/DVN/25833

  6. Chen, S., Ma, K., Zheng, Y.: Med3D: Transfer learning for 3D medical image analysis. arXiv preprint arXiv:1904.00625 (2019)

  7. Daniel, A.G., et al.: Functional connectivity within glioblastoma impacts overall survival. Neuro-oncology 23(3), 412–421 (2021)

    Article  Google Scholar 

  8. Fox, M.D.: Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med. 379(23), 2237–2245 (2018)

    Article  Google Scholar 

  9. González, S.R., Zemmoura, I., Tauber, C.: 3D brain tumor segmentation and survival prediction using ensembles of convolutional neural networks. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 241–254. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_21

    Chapter  Google Scholar 

  10. Gotkowski, K., Gonzalez, C., Bucher, A., Mukhopadhyay, A.: M3d-CAM: A pyTorch library to generate 3D data attention maps for medical deep learning (2020)

    Google Scholar 

  11. Gregg, N., et al.: Neurobehavioural changes in patients following brain tumour: patients and relatives perspective. Support. Care Cancer 22, 2965–2972 (2014)

    Article  Google Scholar 

  12. Hu, Z., et al.: A deep learning model with radiomics analysis integration for glioblastoma post-resection survival prediction. arXiv preprint arXiv:2203.05891 (2022)

  13. Kim, N.Y., et al.: Network effects of brain lesions causing central poststroke pain. Ann. Neurol. 92(5), 834–845 (2022)

    Article  Google Scholar 

  14. Kraus, J.A., et al.: Molecular analysis of the PTEN, TP53 and CDKN2A tumor suppressor genes in long-term survivors of glioblastoma multiforme. J. Neurooncol. 48, 89–94 (2000)

    Article  Google Scholar 

  15. Kraus, J.A., et al.: Long-term survival of glioblastoma multiforme: importance of histopathological reevaluation. J. Neurol. 247, 455–460 (2000)

    Article  Google Scholar 

  16. Lamichhane, B., Daniel, A.G., Lee, J.J., Marcus, D.S., Shimony, J.S., Leuthardt, E.C.: Machine learning analytics of resting-state functional connectivity predicts survival outcomes of glioblastoma multiforme patients. Front. Neurol. 12, 642241 (2021)

    Article  Google Scholar 

  17. Liu, L., et al.: Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks. Brain Imaging Behav. 13, 1333–1351 (2019)

    Article  Google Scholar 

  18. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  19. Nie, D., et al.: Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci. Rep. 9(1), 1103 (2019)

    Article  Google Scholar 

  20. Prasanna, P., et al.: Mass effect deformation heterogeneity (MEDH) on gadolinium-contrast T1-weighted MRI is associated with decreased survival in patients with right cerebral hemisphere glioblastoma: a feasibility study. Sci. Rep. 9(1), 1145 (2019)

    Article  MathSciNet  Google Scholar 

  21. Rajput, S., Agravat, R., Roy, M., Raval, M.S.: Glioblastoma multiforme patient survival prediction. In: Su, R., Zhang, Y.-D., Liu, H. (eds.) MICAD 2021. LNEE, vol. 784, pp. 47–58. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3880-0_6

    Chapter  Google Scholar 

  22. Ricard, D., Idbaih, A., Ducray, F., Lahutte, M., Hoang-Xuan, K., Delattre, J.Y.: Primary brain tumours in adults. Lancet 379(9830), 1984–1996 (2012)

    Article  Google Scholar 

  23. Salvalaggio, A., De Filippo De Grazia, M., Zorzi, M., Thiebaut de Schotten, M., Corbetta, M.: Post-stroke deficit prediction from lesion and indirect structural and functional disconnection. Brain 143(7), 2173–2188 (2020)

    Google Scholar 

  24. Sprugnoli, G., et al.: Tumor bold connectivity profile correlates with glioma patients’ survival. Neuro-Oncol. Adv. 4(1), vdac153 (2022)

    Google Scholar 

  25. Talacchi, A., Santini, B., Savazzi, S., Gerosa, M.: Cognitive effects of tumour and surgical treatment in glioma patients. J. Neurooncol. 103, 541–549 (2011)

    Article  Google Scholar 

  26. Thomas, R., O’Connor, A.M., Ashley, S.: Speech and language disorders in patients with high grade glioma and its influence on prognosis. J. Neurooncol. 23, 265–270 (1995)

    Article  Google Scholar 

  27. Wang, S., Dai, C., Mo, Y., Angelini, E., Guo, Y., Bai, W.: Automatic brain tumour segmentation and biophysics-guided survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 61–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_6

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 62202442, and in part by the Anhui Provincial Natural Science Foundation under Grant 2208085QF188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, X., Xiao, L., Sun, X., Wu, F. (2023). Overall Survival Time Prediction of Glioblastoma on Preoperative MRI Using Lesion Network Mapping. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics