Skip to main content

Skin Lesion Correspondence Localization in Total Body Photography

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Longitudinal tracking of skin lesions - finding correspondence, changes in morphology, and texture - is beneficial to the early detection of melanoma. However, it has not been well investigated in the context of full-body imaging. We propose a novel framework combining geometric and texture information to localize skin lesion correspondence from a source scan to a target scan in total body photography (TBP). Body landmarks or sparse correspondence are first created on the source and target 3D textured meshes. Every vertex on each of the meshes is then mapped to a feature vector characterizing the geodesic distances to the landmarks on that mesh. Then, for each lesion of interest (LOI) on the source, its corresponding location on the target is first coarsely estimated using the geometric information encoded in the feature vectors and then refined using the texture information. We evaluated the framework quantitatively on both a public and a private dataset, for which our success rates (at 10 mm criterion) are comparable to the only reported longitudinal study. As full-body 3D capture becomes more prevalent and has higher quality, we expect the proposed method to constitute a valuable step in the longitudinal tracking of skin lesions.

M. Kazhdan and M. Armand—Co-senior authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, N.R., et al.: Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. JAMA 292(22), 2771–2776 (2004)

    Article  Google Scholar 

  2. Bogo, F., Romero, J., Peserico, E., Black, M.J.: Automated detection of new or evolving melanocytic lesions using a 3D body model. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 593–600. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_74

    Chapter  Google Scholar 

  3. Datar, M., Lyu, I., Kim, S.H., Cates, J., Styner, M.A., Whitaker, R.: Geodesic distances to landmarks for dense correspondence on ensembles of complex shapes. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 19–26. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_3

    Chapter  Google Scholar 

  4. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3D local surface description and object recognition. Int. J. Comput. Vision 105(1), 63–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Halpern, A.C.: Total body skin imaging as an aid to melanoma detection. In: Seminars in Cutaneous Medicine and Surgery, vol. 22, pp. 2–8 (2003)

    Google Scholar 

  6. Kim, H., Kim, J., Kam, J., Park, J., Lee, S.: Deep virtual markers for articulated 3D shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11615–11625 (2021)

    Google Scholar 

  7. Korotkov, K., et al.: An improved skin lesion matching scheme in total body photography. IEEE J. Biomed. Health Inform. 23(2), 586–598 (2018)

    Article  Google Scholar 

  8. Korotkov, K., Quintana, J., Puig, S., Malvehy, J., Garcia, R.: A new total body scanning system for automatic change detection in multiple pigmented skin lesions. IEEE Trans. Med. Imaging 34(1), 317–338 (2014)

    Article  Google Scholar 

  9. Li, Y., Esteva, A., Kuprel, B., Novoa, R., Ko, J., Thrun, S.: Skin cancer detection and tracking using data synthesis and deep learning. arXiv preprint arXiv:1612.01074 (2016)

  10. Mcgregor, B.: Automatic registration of images of pigmented skin lesions. Pattern Recogn. 31(6), 805–817 (1998)

    Article  Google Scholar 

  11. Mirzaalian, H., Hamarneh, G., Lee, T.K.: A graph-based approach to skin mole matching incorporating template-normalized coordinates. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2152–2159. IEEE (2009)

    Google Scholar 

  12. Mirzaalian, H., Lee, T.K., Hamarneh, G.: Uncertainty-based feature learning for skin lesion matching using a high order MRF optimization framework. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 98–105. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_13

    Chapter  Google Scholar 

  13. Mirzaalian, H., Lee, T.K., Hamarneh, G.: Spatial normalization of human back images for dermatological studies. IEEE J. Biomed. Health Inform. 18(4), 1494–1501 (2013)

    Article  Google Scholar 

  14. Mirzaalian, H., Lee, T.K., Hamarneh, G.: Skin lesion tracking using structured graphical models. Med. Image Anal. 27, 84–92 (2016)

    Article  Google Scholar 

  15. Mitchel, T.W., Rusinkiewicz, S., Chirikjian, G.S., Kazhdan, M.: Echo: extended convolution histogram of orientations for local surface description. In: Computer Graphics Forum, vol. 40, pp. 180–194. Wiley Online Library (2021)

    Google Scholar 

  16. Perednia, D.A., White, R.G.: Automatic registration of multiple skin lesions by use of point pattern matching. Comput. Med. Imaging Graph. 16(3), 205–216 (1992)

    Article  Google Scholar 

  17. Roning, J., Riech, M.: Registration of nevi in successive skin images for early detection of melanoma. In: Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No. 98EX170), vol. 1, pp. 352–357. IEEE (1998)

    Google Scholar 

  18. Saint, A., Ahmed, E., Cherenkova, K., Gusev, G., Aouada, D., Ottersten, B., et al.: 3DBodyTex: textured 3D body dataset. In: 2018 International Conference on 3D Vision (3DV), pp. 495–504. IEEE (2018)

    Google Scholar 

  19. Saint, A., Cherenkova, K., Gusev, G., Aouada, D., Ottersten, B., et al.: Bodyfitr: robust automatic 3D human body fitting. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 484–488. IEEE (2019)

    Google Scholar 

  20. Salti, S., Tombari, F., Di Stefano, L.: Shot: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)

    Article  Google Scholar 

  21. Strakowska, M., Kociołek, M.: Skin lesion matching algorithm for application in full body imaging systems. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) ITIB 2022. Advances in Intelligent Systems and Computing, vol. 1429, pp. 222–233. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09135-3_19

    Chapter  Google Scholar 

  22. Strzelecki, M.H., Strąkowska, M., Kozłowski, M., Urbańczyk, T., Wielowieyska-Szybińska, D., Kociołek, M.: Skin lesion detection algorithms in whole body images. Sensors 21(19), 6639 (2021)

    Article  Google Scholar 

  23. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_26

    Chapter  Google Scholar 

  24. Tombari, F., Salti, S., Di Stefano, L.: A combined texture-shape descriptor for enhanced 3D feature matching. In: 2011 18th IEEE International Conference on Image Processing, pp. 809–812. IEEE (2011)

    Google Scholar 

  25. White, R.G., Perednia, D.A.: Automatic derivation of initial match points for paired digital images of skin. Comput. Med. Imaging Graph. 16(3), 217–225 (1992)

    Article  Google Scholar 

  26. Zhao, M., Kawahara, J., Abhishek, K., Shamanian, S., Hamarneh, G.: Skin3D: detection and longitudinal tracking of pigmented skin lesions in 3D total-body textured meshes. Med. Image Anal. 77, 102329 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

The research was in part supported by the Intramural Research Program (IRP) of the NIH/NICHD, Phase I of NSF STTR grant 2127051, and Phase I NIH/NIBIB STTR grant R41EB032304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Lun Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2062 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, WL., Tashayyod, D., Kang, J., Gandjbakhche, A., Kazhdan, M., Armand, M. (2023). Skin Lesion Correspondence Localization in Total Body Photography. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics