Skip to main content

ModusGraph: Automated 3D and 4D Mesh Model Reconstruction from Cine CMR with Improved Accuracy and Efficiency

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Anatomical heart mesh models created from cine cardiac images are useful for the evaluation and monitoring of cardiovascular diseases, but require challenging and time-consuming reconstruction processes. Errors due to reduced spatial resolution and motion artefacts limit the accuracy of 3D models. We proposed ModusGraph to produce a higher quality 3D and 4D (3D+time) heart models automatically, employing i) a voxel processing module with Modality Handles and a super-resolution decoder to define low-resolution and high-resolution segmentations and correct motion artefacts with multi-modal unpaired data, ii) a Residual Spatial-temporal Graph Convolution Network to generate mesh models by controlled and progressive spatial-temporal deformation to better capture the cardiac motion, and iii) a Signed Distance Sampling process to bridge those two parts for end-to-end training. ModusGraph was trained and evaluated on CT angiograms and cardiovascular MRI cines, showing superior performance compared to other mesh reconstruction methods. It creates well-defined meshes from sparse MRI cines, enabling vertex tracking across cardiac cycle frames. This process aids in analyzing myocardium function and conducting biomechanical analyses from imaging data https://github.com/MalikTeng/ModusGraph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asad, M., Dorent, R., Vercauteren, T.: Fastgeodis: fast generalised geodesic distance transform. J. Open Sourc. Softw. 7(79), 4532 (2022)

    Article  Google Scholar 

  2. Aubert, B., Vazquez, C., Cresson, T., Parent, S., de Guise, J.A.: Toward automated 3d spine reconstruction from biplanar radiographs using CNN for statistical spine model fitting. IEEE Trans. Med. Imaging 38(12), 2796–2806 (2019)

    Article  Google Scholar 

  3. Banerjee, A., et al.: A completely automated pipeline for 3d reconstruction of human heart from 2d cine magnetic resonance slices. Phil. Trans. R. Soc. A 379(2212), 20200257 (2021)

    Article  Google Scholar 

  4. Bongratz, F., Rickmann, A.M., Pölsterl, S., Wachinger, C.: Vox2cortex: fast explicit reconstruction of cortical surfaces from 3d mri scans with geometric deep neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20773–20783 (2022)

    Google Scholar 

  5. Criminisi, A., Sharp, T., Blake, A.: GeoS: geodesic image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 99–112. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_9

    Chapter  Google Scholar 

  6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  7. Gopinath, K., Desrosiers, C., Lombaert, H.: SegRecon: learning joint brain surface reconstruction and segmentation from images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 650–659. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_61

    Chapter  Google Scholar 

  8. Govil, S., et al.: A deep learning approach for fully automated cardiac shape modeling in tetralogy of Fallot. J. Cardiovasc. Magn. Reson. 25(1), 15 (2023)

    Article  Google Scholar 

  9. Guo, F., Li, M., Ng, M., Wright, G., Pop, M.: Cine and multicontrast late enhanced MRI registration for 3D heart model construction. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 49–57. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_6

    Chapter  Google Scholar 

  10. Hanocka, R., Metzer, G., Giryes, R., Cohen-Or, D.: Point2mesh: a self-prior for deformable meshes. arXiv preprint arXiv:2005.11084 (2020)

  11. Havsteen, I., Ohlhues, A., Madsen, K.H., Nybing, J.D., Christensen, H., Christensen, A.: Are movement artifacts in magnetic resonance imaging a real problem?-a narrative review. Front. Neurol. 8, 232 (2017)

    Article  Google Scholar 

  12. Investigators, S.H.: Coronary CT angiography and 5-year risk of myocardial infarction. N. Engl. J. Med. 379(10), 924–933 (2018)

    Article  Google Scholar 

  13. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  14. Kong, F., Shadden, S.C.: Whole heart mesh generation for image-based computational simulations by learning free-from deformations. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 550–559. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_53

    Chapter  Google Scholar 

  15. Kong, F., Shadden, S.C.: Learning whole heart mesh generation from patient images for computational simulations. IEEE Trans. Med. Imaging 42, 533–545 (2022)

    Article  Google Scholar 

  16. Kramer, C.M., Barkhausen, J., Flamm, S.D., Kim, R.J., Nagel, E.: Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J. Cardiovasc. Magn. Reson. 10, 1–10 (2008)

    Article  Google Scholar 

  17. Lebrat, L., et al.: CorticalFlow: a diffeomorphic mesh transformer network for cortical surface reconstruction. Adv. Neural. Inf. Process. Syst. 34, 29491–29505 (2021)

    Google Scholar 

  18. Liao, J.R., Pauly, J.M., Brosnan, T.J., Pelc, N.J.: Reduction of motion artifacts in cine MRI using variable-density spiral trajectories. Magn. Reson. Med. 37(4), 569–575 (1997)

    Article  Google Scholar 

  19. Loop, C.: Smooth subdivision surfaces based on triangles (1987)

    Google Scholar 

  20. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  21. Ma, Q., Li, L., Robinson, E.C., Kainz, B., Rueckert, D., Alansary, A.: CortexODE: learning cortical surface reconstruction by neural odes. IEEE Trans. Med. Imaging 42, 430–443 (2022)

    Article  Google Scholar 

  22. Ma, R., Wang, R., Pizer, S., Rosenman, J., McGill, S.K., Frahm, J.-M.: Real-time 3D reconstruction of colonoscopic surfaces for determining missing regions. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 573–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_64

    Chapter  Google Scholar 

  23. Menchón-Lara, R.M., Simmross-Wattenberg, F., Casaseca-de-la Higuera, P., Martín-Fernández, M., Alberola-López, C.: Reconstruction techniques for cardiac cine MRI. Insights Imaging 10, 1–16 (2019)

    Article  Google Scholar 

  24. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12026–12035 (2019)

    Google Scholar 

  25. Suinesiaputra, A., Gilbert, K., Pontre, B., Young, A.A.: Imaging biomarkers for cardiovascular diseases. In: Handbook of Medical Image Computing and Computer Assisted Intervention, pp. 401–428. Elsevier (2020)

    Google Scholar 

  26. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NEUS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021)

  27. Wickramasinghe, U., Remelli, E., Knott, G., Fua, P.: Voxel2Mesh: 3D mesh model generation from volumetric data. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 299–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_30

    Chapter  Google Scholar 

  28. Wolberg, G., Sueyllam, H., Ismail, M., Ahmed, K.: One-dimensional resampling with inverse and forward mapping functions. J. Graphics Tools 5(3), 11–33 (2000)

    Article  Google Scholar 

  29. Xu, H., et al.: Whole heart anatomical refinement from CCTA using extrapolation and parcellation. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds.) FIMH 2021. LNCS, vol. 12738, pp. 63–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78710-3_7

    Chapter  Google Scholar 

  30. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

Download references

Acknowledgements

YD was funded by the Kings-China Scholarship Council PhD Scholarship Program. HX was funded by Innovate UK (104691) London Medical Imaging & Artificial Intelligence Centre for Value Based Healthcare. SCOT-HEART was funded by The Chief Scientist Office of the Scottish Government Health and Social Care Directorates (CZH/4/588), with supplementary awards from Edinburgh and Lothian’s Health Foundation Trust and the Heart Diseases Research Fund. AAY and KP acknowledge funding from the National Institutes of Health R01HL121754 and Welcome ESPCR Centre for Medical Engineering at King’s College London WT203148/Z/16/Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair Young .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 40587 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, Y. et al. (2023). ModusGraph: Automated 3D and 4D Mesh Model Reconstruction from Cine CMR with Improved Accuracy and Efficiency. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics