Skip to main content

Semantic Difference Guidance for the Uncertain Boundary Segmentation of CT Left Atrial Appendage

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14226))

  • 3346 Accesses

Abstract

Atrial fibrillation (AF) is one of the most common types of cardiac arrhythmia, which is closely relevant to anatomical structures including the left atrium (LA) and the left atrial appendage (LAA). Thus, a thorough understanding of the LA and LAA is essential for the AF treatment. In this paper, we have modeled relative relations between the LA and LAA via deep segmentation networks for the first time, and introduce a new LA & LAA CT dataset. To deal with uncertain boundaries between the LA and LAA, we propose the semantic difference module (SDM) based on diffusion theory to refine features with enhanced boundary information. Besides, disconnections between the LA and LAA are frequently observed in the segmentation results due to uncertain boundaries of the LAA region and CT imaging noise. To address this issue, we devise another connectivity-refined network with the connectivity loss. The loss function exerts a distance regularization on coarse predictions from the first-stage network. Experiments demonstrate that our proposed model can achieve state-of-the-art segmentation performance compared with classic convolutional-neural-networks (CNNs) and recent Transformer-based models on this new dataset. Specifically, SDM can also outperform existing methods on refining uncertain boundaries. Codes are available at https://github.com/AlexYouXin/LA-LAA-segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Diakogiannis, F.I., Waldner, F., Caccetta, P., Wu, C.: Resunet-A: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogrammetry Remote Sens. 162, 94–114 (2020)

    Google Scholar 

  4. Hatamizadeh, A., Terzopoulos, D., Myronenko, A.: End-to-end boundary aware networks for medical image segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 187–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_22

    Chapter  Google Scholar 

  5. Hatamizadeh, A., et al.: UnetR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  6. He, K., et al.: Transformers in medical image analysis: a review. Intell. Med. (2022)

    Google Scholar 

  7. Huttenlocher, D.P., et al.: Comparing images using the hausdorff distance. TPAMI 15(9), 850–863 (1993)

    Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Google Scholar 

  9. Jin, C., et al.: Left atrial appendage segmentation using fully convolutional neural networks and modified three-dimensional conditional random fields. IEEE J. Biomed. Health Inform. 22(6), 1906–1916 (2018)

    Google Scholar 

  10. Kervadec, H., et al.: Boundary loss for highly unbalanced segmentation. Med. Image Anal. 67, 101851 (2021)

    Google Scholar 

  11. Lee, H.J., Kim, J.U., Lee, S., Kim, H.G., Ro, Y.M.: Structure boundary preserving segmentation for medical image with ambiguous boundary. In: CVPR, pp. 4817–4826 (2020)

    Google Scholar 

  12. Leventić, H., Benčević, M., Babin, D., Habijan, M., Galić, I.: A survey of left atrial appendage segmentation and analysis in 3D and 4d medical images. arXiv preprint arXiv:2205.06486 (2022)

  13. Leventić, H., et al.: Left atrial appendage segmentation from 3D CCTA images for occluder placement procedure. Comput. Biol. Med. 104, 163–174 (2019)

    Article  Google Scholar 

  14. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  15. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  16. Tan, H., Sitong, W., Pi, J.: Semantic diffusion network for semantic segmentation. NeurIPS 35, 8702–8716 (2022)

    Google Scholar 

  17. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)

    Google Scholar 

  18. Tobon-Gomez, C., et al.: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans. Med. Imaging 34(7), 1460–1473 (2015)

    Google Scholar 

  19. Valanarasu, J.M.J., Patel, V.M.: UNeXt: MLP-based rapid medical image segmentation network. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 23–33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_3

    Chapter  Google Scholar 

  20. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

    Chapter  Google Scholar 

  21. Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vision 31(2–3), 111 (1999)

    Article  MATH  Google Scholar 

  22. Weickert, J., Ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)

    Google Scholar 

  23. Xie, Y., Liao, H., Zhang, D., Chen, F.: Uncertainty-aware cascade network for ultrasound image segmentation with ambiguous boundary. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 268–278. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_26

    Chapter  Google Scholar 

  24. Xiong, Z., et al.: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Med. Image Anal. 67, 101832 (2021)

    Google Scholar 

  25. Yeung, M., Yang, G., Sala, E., Schönlieb, C.-B., Rundo, L.: Incorporating boundary uncertainty into loss functions for biomedical image segmentation. arXiv preprint arXiv:2111.00533 (2021)

  26. Yuan, Y., Xie, J., Chen, X., Wang, J.: SegFix: model-agnostic boundary refinement for segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 489–506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_29

    Chapter  Google Scholar 

  27. Zheng, Y., Yang, D., John, M., Comaniciu, D.: Multi-part modeling and segmentation of left atrium in c-arm CT for image-guided ablation of atrial fibrillation. IEEE Trans. Med. Imaging 33(2), 318–331 (2013)

    Article  Google Scholar 

  28. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported in part by National Key R &D Program of China (2019YFB1311503), the Shanghai Sailing Program (20YF1420800), the Shanghai Health and Family Planning Commission (202240110) and Xinhua Hospital affiliated with the School of Medicine (XHKC2021-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 231 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

You, X. et al. (2023). Semantic Difference Guidance for the Uncertain Boundary Segmentation of CT Left Atrial Appendage. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics