Skip to main content

Segment Membranes and Nuclei from Histopathological Images via Nuclei Point-Level Supervision

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Accurate segmentation and analysis of membranes from immunohistochemical (IHC) images are crucial for cancer diagnosis and prognosis. Although several fully-supervised deep learning methods for membrane segmentation from IHC images have been proposed recently, the high demand for pixel-level annotations makes this process time-consuming and labor-intensive. To overcome this issue, we propose a novel deep framework for membrane segmentation that utilizes nuclei point-level supervision. Our framework consists of two networks: a Seg-Net that generates segmentation results for membranes and nuclei, and a Tran-Net that transforms the segmentation into semantic points. In this way, the accuracy of the semantic points is closely related to the segmentation quality. Thus, the inconsistency between the semantic points and the point annotations can be used as effective supervision for cell segmentation. We evaluated the proposed method on two IHC membrane-stained datasets and achieved an 81.36% IoU and 85.51% \(F_1\) score of the fully supervised method. All source codes are available here.

L. Cui, J. Feng, W. Yang and L. Yang–Equally contribution.

H. Li and Z. Xu—Equally first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aurenhammer, F., Klein, R.: Voronoi diagrams. Handb. Comput. Geom. 5(10), 201–290 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Di Cataldo, S., Ficarra, E., Macii, E.: Selection of tumor areas and segmentation of nuclear membranes in tissue confocal images: a fully automated approach. In: 2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007), pp. 390–398. IEEE (2007)

    Google Scholar 

  3. Elmoataz, A., Schüpp, S., Clouard, R., Herlin, P., Bloyet, D.: Using active contours and mathematical morphology tools for quantification of immunohistochemical images. Signal Process. 71(2), 215–226 (1998)

    Article  MATH  Google Scholar 

  4. Ficarra, E., Di Cataldo, S., Acquaviva, A., Macii, E.: Automated segmentation of cells with ihc membrane staining. IEEE Trans. Biomed. Eng. 58(5), 1421–1429 (2011)

    Article  Google Scholar 

  5. Graham, S., et al.: Hover-net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Article  Google Scholar 

  6. Han, L., Yin, Z.: Unsupervised network learning for cell segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 282–292. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_27

    Chapter  Google Scholar 

  7. Hou, L., Agarwal, A., Samaras, D., Kurc, T.M., Gupta, R.R., Saltz, J.H.: Robust histopathology image analysis: to label or to synthesize? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8533–8542 (2019)

    Google Scholar 

  8. Ji, Y., et al.: Multi-compound transformer for accurate biomedical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 326–336. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_31

    Chapter  Google Scholar 

  9. Khameneh, F.D., Razavi, S., Kamasak, M.: Automated segmentation of cell membranes to evaluate her2 status in whole slide images using a modified deep learning network. Comput. Biol. Med. 110, 164–174 (2019)

    Article  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., Zhang, D.: Ds-transunet: dual swin transformer u-net for medical image segmentation. IEEE Trans. Instrument. Meas. 71, 1–15 (2022)

    Google Scholar 

  12. Luna, M., Kwon, M., Park, S.H.: Precise separation of adjacent nuclei using a siamese neural network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 577–585. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_64

    Chapter  Google Scholar 

  13. Bueno-de Mesquita, J.M., Nuyten, D., Wesseling, J., van Tinteren, H., Linn, S., van De Vijver, M.: The impact of inter-observer variation in pathological assessment of node-negative breast cancer on clinical risk assessment and patient selection for adjuvant systemic treatment. Ann. Oncol. 21(1), 40–47 (2010)

    Article  Google Scholar 

  14. Mi, H., et al.: A quantitative analysis platform for pd-l1 immunohistochemistry based on point-level supervision model. In: IJCAI, pp. 6554–6556 (2019)

    Google Scholar 

  15. Qaiser, T., Rajpoot, N.M.: Learning where to see: a novel attention model for automated immunohistochemical scoring. IEEE Trans. Med. Imaging 38(11), 2620–2631 (2019)

    Article  Google Scholar 

  16. Qu, H., et al.: Weakly supervised deep nuclei segmentation using points annotation in histopathology images. In: International Conference on Medical Imaging with Deep Learning, pp. 390–400. PMLR (2019)

    Google Scholar 

  17. Roerdink, J.B., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta informaticae 41(1–2), 187–228 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Saha, M., Chakraborty, C.: Her2net: a deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation. IEEE Trans. Image Process. 27(5), 2189–2200 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Swiderska-Chadaj, Z., et al.: Learning to detect lymphocytes in immunohistochemistry with deep learning. Med. Image Anal. 58, 101547 (2019)

    Article  Google Scholar 

  21. Tian, K., et al.: Weakly-supervised nucleus segmentation based on point annotations: a coarse-to-fine self-stimulated learning strategy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 299–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_29

    Chapter  Google Scholar 

  22. Vogel, C., et al.: P1–07-02: discordance between central and local laboratory her2 testing from a large her2- negative population in virgo, a metastatic breast cancer registry (2011)

    Google Scholar 

  23. Wolff, A.C., et al.: Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of american pathologists clinical practice guideline focused update. Arch. Pathol. Lab. Med. 142(11), 1364–1382 (2018)

    Article  Google Scholar 

  24. Xu, J., et al.: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2015)

    Article  Google Scholar 

  25. Yang, L., Meer, P., Foran, D.J.: Unsupervised segmentation based on robust estimation and color active contour models. IEEE Trans. Inf. Technol. Biomed. 9(3), 475–486 (2005)

    Article  Google Scholar 

  26. Yang, X., Li, H., Zhou, X.: Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and kalman filter in time-lapse microscopy. IEEE Trans. Circ. Syst. I: Regul. Papers 53(11), 2405–2414 (2006)

    Article  Google Scholar 

  27. Yoo, I., Yoo, D., Paeng, K.: PseudoEdgeNet: nuclei segmentation only with point annotations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 731–739. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_81

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC Grant No. 62073260, No.62106198 and No.62276052), and the Natural Science Foundation of Shaanxi Province of China (2021JQ-461), the General Project of Education Department of Shaanxi Provincial Government under Grant 21JK0927. Medical writing support is provided by AstraZeneca China. The technical and equipment support is provided by HangZhou DiYingJia Technology Co., Ltd (DeepInformatics++). The authors would like to thank the medical team at AstraZeneca China and techinical team at DeepInformatics++ for their scientific comments on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Cui .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3799 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H. et al. (2023). Segment Membranes and Nuclei from Histopathological Images via Nuclei Point-Level Supervision. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics