Skip to main content

Advanced Ceramics: Stages of Development

  • Chapter
  • First Online:
Advanced Ceramics

Abstract

Ceramics are inorganic nonmetallic materials (oxides, carbides, nitrides, etc.) processed after sintering of natural or synthetic precursors at high temperature. They can also be applied at or resist high firing temperatures. They are highly crystalline (most of the advanced and traditional ceramics), semi-crystalline (vitrified ceramics such as earthenware, stoneware, and porcelain), or completely amorphous (glasses). The composition/structure relationship, method of processing, raw materials, and applications determine the properties of ceramics and whether the ceramics are traditional or advanced ones. The first man-made ceramics were pottery objects and figurines from clays after firing. Several stages have been considered in the development of ceramic industry until reaching the production of advanced ceramics. The second stage for development of ceramic includes the production of glazed-colored ceramics, ceramic arts, and building products. Recently, new categories of advanced ceramics have been developed for electronics, biomedical, semiconductors, energy, and optical and structural applications. In the present chapter, we are going to shed light on the stages of development for advanced ceramics. Types and classifications, advanced processing techniques, properties, sintering as well as new forms of applications will be presented in the current chapter. Examples of these kinds of advanced ceramics, e.g., alumina, zirconia, Mg–Al spinels, silicon carbide, silicon nitride, ceramic composites, thin films, etc., with their specific applications will be also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://ceramics.org/about/what-are-engineered-ceramics-and-glass/brief-history-of-ceramics-and-glass. Accessed January 1, 2020

  2. D. Eliche-Quesada, Luis Pérez-Villarejo, Pedro José Sánchez-Soto, Introduction to Ceramic Materials: Synthesis, Characterization, Applications, and Recycling, (IntechOpen, 2019), pp. 1–6. https://doi.org/10.5772/intechopen.84710

  3. W. Freiman, in Introduction to Ceramic and Glasses, Engineered materials handbook, ceramic and glasses, vol. 4 (ASM International, 1991), pp. 41–122

    Google Scholar 

  4. R Nathan Katz, Overview of ceramic materials, design and application, in Mechanical Engineers’ Handbook, ed. by Myer Kutz (Wiley, 2006), pp. 433–449. https://doi.org/10.1002/0471777447.ch12

  5. F. Bergaya, G. Lagaly, in General Introduction: Clays, Clay Minerals and Clay Science, ed. by F. Bergaya, B.K.G. Theng, G. Lagaly, Handbook of clay science, vol. 1 (Elsevier, Amsterdam, 2000), pp. 1–18

    Google Scholar 

  6. W.R. Matizamhuka, Advanced ceramics-the new frontier in modern-day technology: part I. J. S. Afr. I. Min. Metall. 118, 757–764 (2018). https://doi.org/10.17159/2411-9717/2018/v118n7a9

    Article  CAS  Google Scholar 

  7. I. Anastopoulos, A. Bhatnagar, E. Lima, Adsorption of rare earth metals: A review of recent literature. J. Mol. Liq. 221, 954–962 (2016). https://doi.org/10.1016/j.molliq.2016.06.076

    Article  CAS  Google Scholar 

  8. L. Su, X. Zeng, H. He, Q. Tao, S. Komarneni, Preparation of functionalized kaolinite/epoxy resin nanocomposites with enhanced thermal properties. Appl. Clay Sci. 148, 103–108 (2017). https://doi.org/10.1016/j.clay.2017.08.017

    Article  CAS  Google Scholar 

  9. A. Alshameri, X. Wei, H. Wang, Y. Fuguo, X. Chen, H. He, C. Yan, F. Xu, in A review of the role of natural clay minerals as effective adsorbents and an alternative source of minerals, ed. by K.S. Essa, Minerals, (IntechOpen 2019), p. 49. Doi: https://doi.org/10.5772/intechopen.

  10. A. Bouquillon, in History of Ceramics, ed. by P. Boch, J-C. Nièpce, Ceramic Materials: Processes, Properties and Applications (ISTE Ltd, 2007), pp. 30–53

    Google Scholar 

  11. F. Bergaya, G. Lagaly, ed. Developments in Clay Science, Handbook of clay science, (Amsterdam: Elsevier, 2006), p. 1224

    Google Scholar 

  12. F. Brigatti, E. Galan, B. Theng, in Structures and Mineralogy of Clay Minerals, Developments In Clay Science (Amsterdam: Elsevier, 2006), pp. 19–86

    Google Scholar 

  13. L. Black, P. Purnell, J. Hill, Adv. Appl. Ceram. 109(5), 253 (2010)

    Article  CAS  Google Scholar 

  14. C. Parr, R. Roesky, C. Wohrmeyer, C N Refractories 5, 6 (2001)

    Google Scholar 

  15. M.A. Serry, S.M. Hammad, M.F.M. Zawrah, Phase composition and microstructure of refractory MgAl2O4 spinel grains. Brit. Ceram. Trans. 97(6), 275–282 (1998). http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1658021

  16. M.F. Zawrah, S. Meky, Ceram Int. 33, 969 (2007)

    Google Scholar 

  17. M.F. Zawrah, N.M. Khalil, Improvement of physico-mechnical properties of self-forming MA-spinel castables. Brit. Ceram. Trans. 100(3), 110–114 (2001). https://doi.org/10.1179/096797801681305

    Article  Google Scholar 

  18. M.F. Zawrah, M.A. Serry, J. Schneider, K.-H. Zum Gahr, Microstructure and mechanical properties of non-stoichiometric MgAl2O4-spinel bodies, Cfi/Ber. DKG 77(3), 22–26 (2000). http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1330158

  19. S.F. Krar, Grinding Technology, 2nd edn. (Delmar Publishers, Albany, 1995), p.334

    Google Scholar 

  20. G.S. Làzaro, S.C. Santos, C.X. Resende, E.A. dos Santos, Individual and combined effects of the elements Zn, Mg and Sr on the surface reactivity of a SiO2·CaO·Na2O·P2O5 bioglass system. J. Non-Cryst. Solids 386, 19–28 (2014). https://doi.org/10.1016/j.jnoncrysol.2013.11.038

    Article  CAS  Google Scholar 

  21. W. Holland, G. Beall, Glass-Ceramic Technology, 1st edn. (The American Ceramic Society, Westerville, OH, 2002), p. 372. https://doi.org/10.2298/SOS0403216U

  22. E.D. Zanotto, Am. Ceram. Soc. Bull. 89, 19 (2010)

    CAS  Google Scholar 

  23. F.C. Serbena, I. Mathias, C.E. Foerster, E.D. Zanotto, Crystallization toughening of a model glass-ceramic. Acta Mater. 86, 216–228 (2015). https://doi.org/10.1016/j.actamat.2014.12.007

    Article  CAS  Google Scholar 

  24. E. Kleebusch, C. Patzig, T. Höche, C. Rüssel, The evidence of phase separation droplets in the crystallization process of a Li2O-Al2O3-SiO2 glass with TiO2 as nucleating agent—an X-ray diffrraction and (S)TEM-study supported by EDX analysis. Ceram. Int. 44, 2919–2926 (2018). https://doi.org/10.1016/j.ceramint.2017.11.040

    Article  CAS  Google Scholar 

  25. I. Alekseeva, O. Dymshits, M. Tsenter, A. Zhilin, V. Golubkov, I. Denisov, N. Skoptsov, A. Malyarevich, K. Yumashev, Optical applications of glass-ceramics. J. Non Cryst. Solids 356, 3042–3058 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.05.103

    Article  CAS  Google Scholar 

  26. L. Fu, H. Engqvist, W. Xia, Glass–ceramics in dentistry: a review. Materials 13, 1–22 (2020). https://doi.org/10.3390/ma13051049

    Article  CAS  Google Scholar 

  27. G.H. Beall, Milestones in glass-ceramics: a personal perspective. Int. J. Appl. Glas. Sci. 5, 93–103 (2014). https://doi.org/10.1111/ijag.12063

    Article  Google Scholar 

  28. M. Montazerian, E.D. Zanotto, Bioactive and inert dental glass-ceramics. J. Biomed. Mater. Res. Part A 1, 619–639 (2016). https://doi.org/10.1002/jbm.a.35923

    Article  CAS  Google Scholar 

  29. H.E.H Sadek, R.M. Khattab, Mahmoud F. Zawrah, Interceram 65, 174 (2016)

    Google Scholar 

  30. R.M. Khattab, A. El-Rafei, M. F. Zawrah, In-situ formation of sintered cordierite-mullite nano-micro composites by utilizing of waste silica fume. Mater. Res. Bull. 47(9), 2662 (2012)

    Google Scholar 

  31. Y. Zhong, L.L. Shaw, M. F. Zawrah, J. Am. Ceram. Soc. 93(10), 3159(2010)

    Google Scholar 

  32. J. Suri, L.L. Shaw, M.F. Zawrah, Ceram. Int. 37, 3477 (2011)

    Google Scholar 

  33. J. Suri, L.L. Shaw, M.F. Zawrah, Tailoring the relative Si3N4 and SiC contents in Si3N4/SiC nanopowders through carbothermic reduction and nitridation of silica fume. Int. J. Appl. Ceram. Technol. 9, 291–303 (2012). https://doi.org/10.1111/j.1744-7402.2011.02710.x

    Article  CAS  Google Scholar 

  34. S.E. Abo Sawan, M.F. Zawrah, R.M.Khattab, A.A. Abdel-Shafi, Mater. Chem. Phys. 239, 121998 (2020)

    Google Scholar 

  35. P.N. Lemougna, J. Yliniemi, E. Adesanya, P. Tanskanen, P. Kinnunen, J. Roning, M. Illikainen, Reuse of copper slag in high-strength building ceramics containing spodumene tailings as fluxing agent. Minerals Engineering 155, 106448 (2020). https://doi.org/10.1016/j.mineng.2020.106448

    Article  CAS  Google Scholar 

  36. P.N. Lemougna, J. Yliniemi, A. Ismailov, E. Levanen, P. Tanskanen, P. Kinnunen, J. Roning, M. Illikainen, Recycling lithium mine tailings in the production of low temperature (700–900 °C) ceramics: Effect of ladle slag and sodium compounds on the processing and final properties. Constr. Build. Mater. 221, 332–344 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.078

    Article  CAS  Google Scholar 

  37. L.L. Hench, J.M. Polak, Third-generation biomedical materials. Science 295, 1014–1017 (2002). https://doi.org/10.1126/science.1067404

    Article  CAS  Google Scholar 

  38. O.P. Kulik, Powder Metall. Met. Ceram. 38, 93 (1999)

    Article  CAS  Google Scholar 

  39. P. Greil, Advanced engineering ceramics. Adv. Mater. 14, 709–715 (2002). https://doi.org/10.1002/1521-4095(20020517)14:10%3C709::AIDADMA709%3E3.0.CO;2-9

    Article  CAS  Google Scholar 

  40. R. Riedel, E. Ionescu, I.W. Chen, in Modern Trends in Advanced Ceramics, ed. by R. Riedel, I.W. Chen, Cerem. Sci. and Tech. (Wiley-VCH, Weinheim, Germany, 2008), pp. 3–38

    Google Scholar 

  41. R.B. Heimann, in Introduction to advanced ceramics, ed. by R.B. Heimann, Classic and advanced ceramics: from fundamentals to applications, (Wiley-VCH Verlag GmbH, 2010), pp. 157-174.

    Google Scholar 

  42. M.F. Zawrah, R.A. Essawy, H.A. Zayed, A.H. Abdel Fattah, M.A. Taha, Mechanical alloying, sintering and characterization of Al2O3–20 wt%–Cu nanocomposite. Ceram. Int. 40, 31-38 (2014). Doi: https://doi.org/10.1016/j.ceramint.2013.05.099.

  43. M.A. Taha, A.H. Nassar, M.F. Zawrah, In-situ formation of composite having hard outer layer based on aluminum dross reinforced by SiC and TiO2. Constr. Build Mater. 248, 118638 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118638

    Article  CAS  Google Scholar 

  44. M.A. Taha, M.F. Zawrah, Mechanical alloying and sintering of a Ni/10 wt.%Al2O3 nanocomposite and its characterization. Silicon 10, 1351-1359 (2018). https://doi.org/10.1007/s12633-017-9611-4.

  45. M.F. Zawrah, M.A. Taha, H. Abo Mostafa, In-situ formation of Al2O3/Al core-shell from waste material. Ceram. Int. 44, 10693–10699 (2018). https://doi.org/10.1016/j.ceramint.2018.03.101.

  46. M.F. Zawrah, H.A. Zayed, R.A. Essawy, A.H. Nassar, M.A. Taha, Preparation by mechanical alloying, characterization and sintering of Cu–20 wt.% Al2O3 nanocomposites. Mater. Des. 46, 485-490 (2013). https://doi.org/10.1016/j.matdes.2012.10.032.

  47. M.F. Zawrah, H. Ahmed, N.E. El-Baly, Fabrication of Al2O3-20 vol% Al nanocomposite powder using high energy milling. Mater. Res. Bull. 47, 655–661 (2012). https://doi.org/10.1016/j.materresbull.2011.12.023

    Article  CAS  Google Scholar 

  48. M.M.S. Wahsh, R.M. Khattab, M.F. Zawrah, Sintering and technological properties of alumina/zirconia/nano TiO2 ceramic composites. Mater. Res. Bull. 48, 1411–1414 (2013). https://doi.org/10.1016/j.materresbull.2012.12.024

    Article  CAS  Google Scholar 

  49. M.F. Zawrah, N.M. Khalil, High alumina castable reinforced with SiC. Adv. Appl. Ceram. 104, 312–317 (2005). https://doi.org/10.1179/174367605X73498

    Article  CAS  Google Scholar 

  50. M.A. Taha, A.H. Nassar, M.F. Zawrah, Improvement of wetability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying. Ceram. Int. 43, 3576–3582 (2017). https://doi.org/10.1016/j.ceramint.2016.11.194

    Article  CAS  Google Scholar 

  51. M.A. Taha, M.F. Zawrah, Effect of nano ZrO2 on strengthening and electrical properties prepared by mechanical alloying. Ceram. Int. 43, 12698–12704 (2017). https://doi.org/10.1016/j.ceramint.2017.06.153

    Article  CAS  Google Scholar 

  52. J. Silvestre, N. Silvestre, J. de Brito, An overview on the improvement of mechanical properties of ceramics nanocomposites. J. Nanomater. 2015, 1–13 (2015). https://doi.org/10.1155/2015/106494

    Article  CAS  Google Scholar 

  53. M.F. Zawrah, H. Abo Mostafa, M.A. Taha, Effect of SiC content on microstructure, mechanical and electrical properties of sintered Al-20Si-xSiC nanocomposites fabricated by mechanical alloying. Mater. Res. Express 6, 1–11 (2019). https://doi.org/10.1088/2053-1591/ab534e

  54. F.S. Moghanlou, M. Vajdi, H. Jafarzadeh, Z. Ahmadi, A. Motallebzadeh, F. Sharifianjazi, M.S. Asl, M. Mohammadi, Spark plasma sinterability and thermal diffusivity of TiN ceramics with graphene additive. Ceram. Int. https://doi.org/10.1016/j.ceramint.2020.12.152

  55. M. Sakkaki, F. Sadegh Moghanlou, M. Vajdi, M. Shahedi Asl, M. Mohammadi, M. Shokouhimehr, Ceram. Int. 46, 4998 (2020)

    Google Scholar 

  56. S. Nekahi, F. Sadegh Moghanlou, M. Vajdi, Z. Ahmadi, A. Motallebzadeh, M. Shahedi Asl, Microstructural, thermal and mechanical characterization of TiB2–SiC composites doped with short carbon fibers, Int. J. Refract. Met. Hard Mater. 82, 129–135 (2019). https://doi.org/10.1016/j.ijrmhm.2019.04.005

  57. M. Vajdi, F. Sadegh Moghanlou, S. Nekahi, Z. Ahmadi, A. Motallebzadeh, H. Jafarzadeh, M. Shahedi Asl, Role of graphene nano-platelets on thermal conductivity and microstructure of TiB2–SiC ceramics. Ceram. Int. 46, 21775–21783 (2020). https://doi.org/10.1016/j.ceramint.2020.05.289

  58. Stuart Hampshire, in Materials Science Forum, vol. 606 (Scientific.Net, 2009), pp. 27–41. https://doi.org/10.4028/www.scientific.net/MSF.606

  59. R.W. Harrison, W.E. Lee, Processing and properties of ZrC, ZrN and ZrCN ceramics: a review. Adv. Appl. Ceram. 115(5), 294–307 (2016). https://doi.org/10.1179/1743676115Y.0000000061

    Article  CAS  Google Scholar 

  60. P. Karvankova, M.G.J. Veprek-Heijman, M.F. Zawrah, S. Veprek, Thin Solid Films 467, 133 (2004)

    Article  CAS  Google Scholar 

  61. M. F. Zawrah, M A Zayed and Moustafa R. K. Ali. J. Hazard. Mater. 227–228, 250 (2012)

    Google Scholar 

  62. M. F. Zawrah, Adel B. Shehata , E. A. Kishar, Randa N. Yamani, Synthesis, hydration and sintering of calcium aluminate nanopowder for biomedical applications. Comptes Rendus Chim. 14(6), 611–618 (2011). https://doi.org/10.1016/j.crci.2010.11.004

  63. J.P. Vacanti, R. Langer, Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet 354, 32–34 (1999). https://doi.org/10.1016/S0140-6736(99)90247-7

    Article  Google Scholar 

  64. J. Elisseeff, W. McIntosh, K. Fu, R. Blunk, R. Langer, Controlled-release of IGF-I and TGF-β1 in a photopolymerizing hydrogel for cartilage tissue engineering. J. Orthop. Res. 19, 1098–1104 (2001). https://doi.org/10.1016/S0736-0266(01)00054-7

    Article  CAS  Google Scholar 

  65. J.E. Babensee, L.V. McIntire, A.G. Mikos, Growth factor delivery for tissue engineering. Pharmaceut. Res. 17(5), 497–504 (2000). https://doi.org/10.1023/a:1007502828372

    Article  CAS  Google Scholar 

  66. D.F. Williams, On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008). https://doi.org/10.1016/j.biomaterials.2008.04.023

    Article  CAS  Google Scholar 

  67. H.E. Jazayeri, M. Rodriguez-Romero, M. Razavi, M. Tahriri, K. Ganjawalla, M. Rasoulianboroujeni, M.H. Malekoshoaraie, K. Khoshroo, L. Tayebi, Ceram. Int. 44, 1 (2018)

    Article  CAS  Google Scholar 

  68. A.F. Black, F. Berthod, N. L’Heureux, L. Germain, F.A. Auger, In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 12, 1331–1340 (1998). https://doi.org/10.1096/fasebj.12.13.1331

    Article  CAS  Google Scholar 

  69. M. Marcacci, E. Kon, V. Moukhachev, A. Lavroukov, S. Kutepov, R. Quarto, M. Mastrogiacomo, R. Cancedda, Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 13, 947–955 (2007). https://doi.org/10.1089/ten.2006.0271

    Article  CAS  Google Scholar 

  70. P.K. Valonen, F.T. Moutos, A. Kusanagi, M.G. Moretti, B.O. Diekman, J.F. Welter, A.I. Caplan, F. Guilak, L.E. Freed, In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3-D-woven poly(e-caprolactone) scaffolds. Biomaterials 31, 2193–2200 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.092

    Article  CAS  Google Scholar 

  71. M.N. Rahaman, J.J. Mao, Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol. Bioeng. 91, 261–284 (2005). https://doi.org/10.1002/bit.20292

    Article  CAS  Google Scholar 

  72. A. Tathe, M. Ghodke, A.P. Nikalje, Int. J. Pharm Sci. 2, 19 (2010)

    CAS  Google Scholar 

  73. N.R. Patel, P.P. Gohil, Int. J. Emerg. Technol. Adv. Eng. 2(4), 91 (2012)

    Google Scholar 

  74. L.L. Hench, Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07132.x

    Article  CAS  Google Scholar 

  75. P. Palmero, Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods. Nanomaterials 5, 656–696 (2015). https://doi.org/10.3390/nano5020656

    Article  CAS  Google Scholar 

  76. J. Venkatesan, S.K. Kim, Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J. Biomed. Nanotechnol. 10, 3124–3140 (2014). https://doi.org/10.1166/jbn.2014.1893

    Article  CAS  Google Scholar 

  77. R.A. Youness, M.A. Taha, A.A. El-Kheshen, N. El-Faramawy, M. Ibrahim, In vitro bioactivity evaluation, antimicrobial behavior and mechanical properties of cerium-containing phosphate glasses. Mater. Res. Express 6, 1–13 (2019). https://doi.org/10.1088/2053-1591/ab15b5

    Article  CAS  Google Scholar 

  78. R.A. Youness, M.A. Taha, M. Ibrahim, A. El-Kheshen, FTIR spectral characterization, mechanical properties and antimicrobial properties of La-doped phosphate-based bioactive glasses. Silicon 10, 1151–1159 (2018). https://doi.org/10.1007/s12633-017-9587-0

    Article  CAS  Google Scholar 

  79. S.M. Abo-Naf, E.M. Khalil, E.M. El-Sayed, H.A. Zayed, R.A. Youness, In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O-CaO-B2O3-P2O5 glasses. Spectrochim. Acta A 144, 88–98 (2015). https://doi.org/10.1016/j.saa.2015.02.076

    Article  CAS  Google Scholar 

  80. E.M.A. Khalil, R.A. Youness, M.S. Amer, M.A. Taha, Mechanical properties, in vitro and in vivo bioactivity assessment of Na2O-CaO-P2O5-B2O3-SiO2 glass-ceramics. Ceram. Int. 44, 7867–7876 (2018). https://doi.org/10.1016/j.ceramint.2018.01.222

    Article  CAS  Google Scholar 

  81. R.A. Youness, M.A. Taha, H. Elhaes, M. Ibrahim, Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis. Mater. Chem. Phys. 190, 209–218 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.004

    Article  CAS  Google Scholar 

  82. R.A. Youness, M.A. Taha, H. Elhaes, M. Ibrahim, Preparation, Fourier transform infrared characterization and mechanical properties of hydroxyapatite nanopowders. J. Comput. Theor. Nanosci. 14, 2409–2415 (2017). https://doi.org/10.1166/jctn.2017.6841

    Article  CAS  Google Scholar 

  83. R.A. Youness, M.A. Taha, M.A. Ibrahim, Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. J. Mol. Struct. 1150, 188–195 (2017). https://doi.org/10.1016/j.molstruc.2017.08.070

    Article  CAS  Google Scholar 

  84. R.A. Youness, M.A. Taha, A.A. El-Kheshen, M. Ibrahim, Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass. Ceram. Int. 44, 20677–20685 (2017). https://doi.org/10.1016/j.ceramint.2018.08.061

    Article  CAS  Google Scholar 

  85. R.A. Youness, M.A. Taha, M.A. Ibrahim, In vitro bioactivity, molecular structure and mechanical properties of zirconia-carbonated hydroxyapatite nanobiocomposites sintered at different temperatures. Mater. Chem. Phys. 239, 122011 (2020). https://doi.org/10.1016/j.matchemphys.2019.122011

    Article  CAS  Google Scholar 

  86. R.A. Youness, M.A. Taha, M. Ibrahim, In vitro bioactivity, physical and mechanical properties of carbonated-fluoroapatite during mechanochemical synthesis. Ceram. Int. 44, 21323–21329 (2018). https://doi.org/10.1016/j.ceramint.2018.08.184

    Article  CAS  Google Scholar 

  87. A. Doostmohammadi, Z.K. Esfahani, A. Ardeshirylajimi, Z.R. Dehkordi, Zirconium modified calcium-silicate-based nanoceramics: An in vivo evaluation in a rabbit tibial defect model. Int. J. Appl. Ceram. Technol. 16, 431–437 (2019). https://doi.org/10.1111/ijac.13076

    Article  CAS  Google Scholar 

  88. A.M. Fayad, A.M. Fathi, A.A. El-Beih, M.A. Taha, S.A.M. Abdel-Hameed, Correlation between antimicrobial activity and bioactivity of Na-mica and Na-mica/fluorapatite glass and glass-ceramics and their corrosion protection of titanium in simulated body fluid. J. Mater. Eng. Perform. 28, 5661–5673 (2019). https://doi.org/10.1007/s11665-019-04296-5

    Article  CAS  Google Scholar 

  89. T. Kokubo, H.-M. Kim, A.M. Kawashita, in Ceramics for Biomedical Applications, ed. by S. Somiya, F. Aldinger, R. Spriggs, K. Uchino, K. Koumoto, M. Kaneno, Handbook of advanced ceramics (Elsevier, 2013), pp. 385–412

    Google Scholar 

  90. L.C. Gerhardt, A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3, 3867–3910 (2010). https://doi.org/10.3390/ma3073867

    Article  CAS  Google Scholar 

  91. A. Refaat, R.A. Youness, M.A. Taha, M. Ibrahim, Effect of zinc oxide on the electronic properties of carbonated hydroxyapatite. J. Mol. Struct. 1147, 148–154 (2017). https://doi.org/10.1016/j.molstruc.2017.06.091

    Article  CAS  Google Scholar 

  92. Z. Huan, J. Chang, Study on physicochemical properties and in vitro bioactivity of tricalcium silicate-calcium carbonate composite bone cement. J. Mater. Sci. Mater. Med. 19, 2913–2918 (2008). https://doi.org/10.1007/s10856-008-3423-4

    Article  CAS  Google Scholar 

  93. F. Martínez-Vázquez, M. Cabañas, J. Paris, D. Lozano, M. Vallet-Regí, Fabrication of novel Si-doped hydroxyapatite/gelatin scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater. 15, 200–209 (2015). https://doi.org/10.1016/j.actbio.2014.12.021

    Article  CAS  Google Scholar 

  94. D. Li, X. Huang, Y. Wu, J. Li, W. Cheng, J. He, H. Tian, Y. Huang, Biomater. Sci. 4, 272 (2016)

    Article  CAS  Google Scholar 

  95. S.Y. Wang, H.Z. Hu, X.C. Qing, Z.C. Zhang, Z.W. Shao, Recent advances of drug delivery nanocarriers in osteosarcoma treatment. J. Cancer 11, 69–82 (2020). https://doi.org/10.7150/jca.36588

    Article  CAS  Google Scholar 

  96. A. Barbanente, R.A. Nadar, L.D. Esposti, B. Palazzo, M. Lafisco, J.J.J.P. van den Beucken, S.C.G. Leeuwenburgh, N. Margiotta, J. Mater. Chem. B 8, 2792 (2020)

    Article  CAS  Google Scholar 

  97. H. Aghaei, A.A. Nourbakhsh, S. Karbasi, R. Javad Kalbasi, M. Rafienia, N. Nourbakhsh, S. Bonakdar, K.J. Mackenzie, Investigation on bioactivity and cytotoxicity of mesoporous nano-composite mcm-48/hydroxyapatite for ibuprofen drug delivery. Ceram. Int. 40, 7355–7362 (2014). https://doi.org/10.1016/j.ceramint.2013.12.079

  98. S. Bhaskar, M. Kumar, A. Patnaik, A review on tribological and mechanical properties of Al alloy composites. Mater. Today 25, 810–815 (2020). https://doi.org/10.1016/j.matpr.2019.09.032

    Article  CAS  Google Scholar 

  99. A. William, Jr Gooch, An overview of ceramic armor applications, 35TH International Conference and Exposition on Advanced Ceramics and Composites Daytona Beach, Fl 32118, 23-28 January 2011, 1-15 (2011).

    Google Scholar 

  100. B. Alemour, O. Badran, M.R. Hassan, A Review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation. J. Aerosp. Technol. Manag. 11, 1–23 (2019). https://doi.org/10.5028/jatm.v11.1022

  101. V. kumar, H. Vasudev, N. Kumar, Int. J. Manage. Technol. Eng. IX, 2308 (2019)

    Google Scholar 

  102. E. Salernitano, C. Migliaresi, J. Appl. Biomater. Biom. 1, 3 (2003)

    Google Scholar 

  103. H.L.W. Chan, K. Li, C.L. Choy, Electroceramic fibres and composites for intelligent apparel applications. Wearable Electron. Photonics, 41–58 (2005). https://doi.org/10.1533/9781845690441.41

  104. N. Setter, R. Waser, Electroceramic materials. Acta Mater. 48, 151–178 (2000). https://doi.org/10.1016/S1359-6454(99)00293-1

  105. Y. He, B. Ping, L. Lu, F. Wang, S. Hu, Electrically conductive ceramic composites prepared with printer toner as the conductive phase. Adv. Appl. Ceram 116, 158–164 (2017). https://doi.org/10.1080/17436753.2016.1278339

  106. D.M. Smyth, in Electrical conductivity in ceramics: a review, ed. by J.A. Pask, A.G. Evans, Ceramic Microstructures ’86. Role of interfaces, vol. 21 (Plenum Press, New York and London, 1987), pp. 643–655

    Google Scholar 

  107. M.A. Ryan, J.P. Fleur, Where there is heat, there is a way. The Electrochem. Soc. Interface 30 (2002).

    Google Scholar 

  108. R.B. Heimann, Plasma spray coating, principles and applications, 2nd edn, (Wiley-VCH Verlag GmbH, Weinheim 2008), pp. 427

    Google Scholar 

  109. H. Henke, D. Adam, A. Köhler, R.B. Heimann, Development and testing of HVOF-sprayed tungsten carbide coatings applied to moulds for concrete roof tiles. Wear 256, 81–87 (2004). https://doi.org/10.1016/s0043-1648(03)00348-x

  110. S. Salman, R. Kose, L. Urtekin, F. Findik, An investigation of different ceramic coatings thermal properties. Mater. Des. 27, 585–590 (2006). https://doi.org/10.1016/j.matdes.2004.12.010

  111. Y. Adraider, Y.X. Pang, F. Nabhani, S.N. Hodgson, M.C. Sharp, A. Al-Waidh, Laser-induced deposition of alumina ceramic coating on stainless steel from dry thin films for surface modification. Ceram. Int. 40, 6151–6156 (2014). https://doi.org/10.1016/j.ceramint.2013.11.067

  112. Y. Adraider, S.N.B. Hodgson, M.C. Sharp, Z.Y. Zhang, F. Nabhani, A. Al–Waidh, Y.X. Pang, Structure characterization and mechanical properties of crystalline alumina coatings on stainless steel fabricated via sol-gel technology and fibre laser processing. J. Eur. Ceram. Soc. 32, 4229–4240 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.07.012

  113. K. Srinivasulu, V.S. Manisha, Int. J. Adv. Eng. Technol. VII, 126 (2016)

    Google Scholar 

  114. M.F. Zawrah, J. Schneider, K.-H. Zum Gahr 22(2), 167 (2002)

    Google Scholar 

  115. M.F. Zawrah, J. Schneider and K-H Zum Gahr. J. Mater. Sci. Eng. A 332(1–2), 167 (2002)

    Google Scholar 

  116. R. Pompe, Some recent promising developments in industrial application of advanced technical ceramics. Transact. Mater. Res. Soc. Japan B 19, 709–718 (1994). https://doi.org/10.1016/B978-1-4832-8382-1.50156-7

  117. N.L. Wang, X.Y. Zhang, H.T. Jiang, T.T. Dong, D. Yang, Fabrication of Er3+/Yb3+ co-doped Y2O3 transparent ceramics by solid-state reaction method and its up-conversion luminescence. Mater. Chem. Phys. 135(2012), 709–713 (2012). https://doi.org/10.1016/j.matchemphys.2012.05.048

  118. S. Arabgari, R. Malekfar, K. Motamedi, Parameters effects on the surface morphology and structure of Nd:YAG nanopowders synthesized by co-precipitation method. J. Nanoparticle Res. 13, 597–611 (2011). https://doi.org/10.1007/s11051-010-0055-7

  119. X.B. Ji, J.G. Deng, B. Kang, H. Huang, X. Wang, W. Jing, T. Xu, Thermal decomposition of Y3Al5O12 precursor synthesized by urea homogenous co-precipitation. J. Anal. Appl. Pyrolysis 104, 361–365 (2013). https://doi.org/10.1016/j.jaap.2013.06.012

  120. K. Guo, H.-H. Chen, X. Guo, X.X. Yang, F.F. Xu, J.T. Zhao, Morphology investigation of yttrium aluminum garnet nano-powders prepared by a sol-gel combustion method. J. Alloys. Compd. 500, 34–38 (2010). https://doi.org/10.1016/j.jallcom.2010.03.037

  121. J. Su, J.H. Miao, L.H. Xu, Y.Q. Ji, C.Q. Wang, Synthesis and characterization of nanocrystalline Nd3+-doped gadolinium scandium aluminum garnet powders by a gel-combustion method. Mater. Res. Bull. 47, 1709–1712 (2012). https://doi.org/10.1016/j.materresbull.2012.03.039

  122. B.T. Huang, Y.Q. Ma, S.B. Qian, D. Zou, G.H. Zheng, Z.X. Dai, Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors. Opt. Mater. 36, 1561–1565 (2014). https://doi.org/10.1016/j.optmat.2014.04.025

  123. Y.H. Sang, H.M. Qin, H. Liu, L.L. Zhao, Y.N. Wang, H.D. Jiang, J.Y. Wang, Partial wet route for YAG powders synthesis leading to transparent ceramic: a core-shell solid-state reaction process. J. Eur. Ceram. Soc. 33, 2617–2623 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.04.009

  124. C.C. Barry, M.N. Grant, Ceramic Materials, Science and Engineering, 1st edn. (New York, NY, Springer, 2013)

    Google Scholar 

  125. D. Eliche-Quesada, L. Pérez-Villarejo, P.J. Sánchez-Soto, in Introduction to ceramic materials: synthesis, characterization, applications and recycling, ed. by J. Cuppoletti, Ceramic materials: synthesis, characterization, applications and recycling (Intech Open, 2019), pp. 1–5

    Google Scholar 

  126. C.H. Leong, A. Muchtar, C.Y. Tan, M. Razali, N.F. Amat, Sintering of hydroxyapatite/yttria stabilized zirconia nanocomposites under nitrogen gas for dental materials. Adv. Mater Sci. Eng. 2014, 1–6 (2014). https://doi.org/10.1155/2014/367267

  127. E. Champion, Sintering of calcium phosphate bioceramics. Acta Biomater. 9, 5855–5875 (2013). https://doi.org/10.1016/j.actbio.2012.11.029

  128. F.J.T. Lin, L.C. De Jonghe, Microstructure refinement of sintered alumina by a two-step sintering technique. J. Am. Ceram. Soc. 80, 2269–2277 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03117.x

  129. T.-S. Yeh, M.D. Sacks, Low-temperature sintering of aluminum oxide. J. Am. Ceram. Soc. 71, 841–844 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb07533.x

  130. X. Kuang, G. Carotenuto, L. Nicolais, Adv. Perform. Mater. 4, 257 (1997)

    Google Scholar 

  131. Z. He, J. Ma, Grain growth rate constant of hot-pressed alumina ceramics. Mater. Lett. 44, 14–18 (2000). https://doi.org/10.1016/S0167-577X(99)00289-X

  132. L. Gao, J.S. Hong, H. Miyamoto, D.D.L. Torre, Bending strength and micro- structure of Al2O3 ceramics densified by spark plasma sintering. J. Eur. Ceram. Soc. 20, 2149–2152 (2000). https://doi.org/10.1016/S0955-2219(00)00086-8

  133. N.J. Lóh, L. Simão, C.A. Faller, A.N. Jr, O.R.K. Montedo, A review of two-step sintering for ceramics. Ceram. Int. 42, 12556-12572 (2016). https://doi.org/10.1016/j.ceramint.2016.05.065

  134. M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, L. Berzina-Cimdina, Biodegradable materials and metallic implants-a review. J. Funct. Biomater. 8, 1–15 (2017). https://doi.org/10.3390/jfb8040044

  135. M.A. Taha, G.M. Elkomy, H. Abo Mostafa, E. Gouda, Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al-4.5 wt.% Cu nanocomposites prepared by mechanical alloying. Mater. Chem. Phys. 206, 116–123 (2018). https://doi.org/10.1016/j.matchemphys.2017.11.058

  136. . M.A. Taha, A.H. Nassar, M.F. Zawrah, Effect of milling parameters on sinterability, mechanical properties of Cu-4 wt.% ZrO2 nanocomposite. Mater. Chem. Phys. 181, 26–32 (2016). Doi:https://doi.org/10.1016/j.matchemphys.2016.06.030

  137. G.S. Upadhyaya, Powder Metallurgy Technology, 1st edn. (Camridge International Publishing 2002), p. 68

    Google Scholar 

  138. M.-Y. Chu, L.C. De Jonghe, M.K.F. Lin, F.J.T. Lin, Precoarsening to improve microstructure and sintering of powder compacts. J. Am. Ceram. Soc. 74, 2902–2911 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06861.x

  139. X.-H. Wang, P.-L. Chen, I.-W. Chen, Two step sintering of ceramics with constant grain-size, I. Y2O3, J. Am. Ceram. Soc. 89, 431–437 (2006). https://doi.org/10.1111/j.1551-2916.2005.00763.x

  140. S. Chakraborty, P.K. Das, D. Ghosh, Rev. Adv. Mater. Sci. 44, 182 (2016)

    Google Scholar 

  141. M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H.U. Kessel, J. Hennicke, R. Kirchner, T. Kessel, in Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials, Sintering Applications (In Tech, 2013), p. 319. https://doi.org/10.5772/53706

  142. S. Bose, S. Dasgupta, S. Tarafder, A. Bandyopadhyay, Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomater. 6, 3782–3790 (2010). https://doi.org/10.1016/j.actbio.2010.03.016

  143. K.E. Haque, Microwave energy for mineral treatment processes-a brief review. Int. J. Miner. Process 57, 1–24 (1999). https://doi.org/10.1016/S0301-7516(99)00009-5

  144. N.K. Tolochko, Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyping J. 9, 314–326 (2003). https://doi.org/10.1108/13552540310502211

  145. T. Ikegami, J.G. Li, T. Mori, Y. Moriyoshi, Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttium hydroxide. J. Am. Ceram. Soc. 85, 1725–1729 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00342

  146. Z. Xiao, S. Yu, Y. Li, S. Ruan, L.B. Kong, Q. Huang, Z. Huang, K. Zhou, H. Su, Z. Yao, W. Que, Y. Liu, T. Zhang, J. Wang, P. Liu, D. Shen, M. Allix, J. Zhang, D. Tang, Materials development and potential applications of transparent ceramics: a review. Mater. Sci. Eng. R 139, 100518 (2020). https://doi.org/10.1016/j.mser.2019.100518

    Article  Google Scholar 

  147. J. Zdeněk, A. Evelyn, C. Bolaňos, H. Monika, J. Petr, in Physical and Metallurgical Characteristics of Fiber Reinforced Ceramic Matrix Composites, ed. by C. Sikalidis, Advances in ceramics-characterization, raw materials, processing, properties, degradation and healing, (Intech Open, 2011), pp. 281–298

    Google Scholar 

  148. X.L. Zhao, Ceramics 102, 3 (1993)

    Google Scholar 

  149. L.K. Zeng, G.Y. Zhang, Chin. J. Mater. Res. 8(3), 245 (1994)

    Google Scholar 

  150. J.H Jeong, K.H. Auh, Modelling. Simul. Sci. Eng. 8, 541 (2000)

    Google Scholar 

  151. B. Lin, F. Liu, X. Zhang, L. Liu, X. Zhu, in Numerical simulations-applications, examples and theory, ed. by L. Angermann. (Intech Open, 2010), pp. 401–414

    Google Scholar 

  152. H. Le Ferrand, Magnetic slip casting for dense and textured ceramics: a review of current achievements and issues. J. Eur. Ceram. Soc. 41, 24–37 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.08.030

  153. A. De Zanet, V. Casalegno, M. Salvo, Laser surface texturing of ceramics and ceramic composite materials – a review. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.11.146

  154. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493–494 (1960). https://doi.org/10.1038/187493a0

  155. M.F. Zawrah, J. Schneider, K.-H. Zum Gahr, Mater. Sci. Eng. A 332, 167 (2002)

    Google Scholar 

  156. S. Grasso, M. Biesuz, L. Zoli, G. Taveri, A.I. Duff,D. Ke, A. Jiang, M.J. Reece, A review of cold sintering processes. Adv. Appl. Ceram. (2020). https://doi.org/10.1080/17436753.2019.1706825

  157. European Comission, Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry (2007), pp. 210–211

    Google Scholar 

  158. M. Cologna, B. Rashkova, R. Raj, Flash sintering of nanograin zirconia in <5 s at 850°C. J. Am. Ceram. Soc. 93, 3556–3559 (2010). https://doi.org/10.1111/j.1551-2916.2010.04089.x

  159. S. Ghosh, A.H. Chokshi, P. Lee, R. Raj, A huge effect of weak dc electrical fields on grain growth in zirconia. J. Am. Ceram. Soc. 92, 1856–1859 (2009). https://doi.org/10.1111/j.1551-2916.2009.03102.x

  160. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of ceramics: a review. J. Eur. Ceram. Soc. 39, 661–687 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

  161. L. Marcus, J.J. Beaman, J.W. Barlow, D.L. Bourell, Solid freeform fabrication-powder processing. Am. Ceram. Soc. Bull. 69(6), 1030–1031 (1990)

    Google Scholar 

  162. E. Sachs, M. Cima, J. Cornie, Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. CIRP Ann. Manuf. Technol. 39(1), 201–204 (1990). https://doi.org/10.1016/S0007-8506(07)61035-X

  163. T. Ohji, M. Fukushima. Mater. Rev. 57(2), 115 (2012)

    Google Scholar 

  164. E.C. Hammel, O.L.-R. Ighodaro, O.I. Okoli, Processing and properties of advanced porous ceramics: an application based review. Ceram. Int. 40 (10), 15351–15370 (2014). https://doi.org/10.1016/j.ceramint.2014.06.095

  165. M.A. Keane, Ceramics for catalysis. J. Mater. Sci. 38, 4661–4675 (2003)

    Article  CAS  Google Scholar 

  166. K. Usami, A. Okamoto, Hydroxyapatite: catalyst for a one-pot pentose formation. Org. Biomol. Chem. 15, 8888–8893 (2017). https://doi.org/10.1039/c7ob02051a

    Article  CAS  Google Scholar 

  167. S. ben Moussa, A. Mehri, B. Badraoui, Magnesium modified calcium hydroxyapatite: an efficient and recyclable catalyst for the one-pot Biginelli condensation. J. Mol. Struct. 1200, 127111 (2020). https://doi.org/10.1016/j.molstruc.2019.127111

  168. D. Milovac, I. Weigand, M. Kovacic, M. Ivankovic, H. Ivankovic, Highly porous hydroxyapatite derived from cuttlefish bone as TiO2 catalyst support. Process. Appl. Ceram. 12(2), 136–142 (2018). https://doi.org/10.2298/PAC1802136M

    Article  CAS  Google Scholar 

  169. S.C. Oh, J. Xu, D.T. Tran, B. Liu, D. Liu, Effects of controlled crystalline surface of hydroxyapatite on methane oxidation reactions. ACS Catal. 8(5), 4493–4507 (2018). https://doi.org/10.1021/acscatal.7b04011

    Article  CAS  Google Scholar 

  170. M. Shokouhimehr, S.M.G. Yek, M. Nasrollahzadeh, A. Kim, R.S. Varma, Palladium nanocatalysts on hydroxyapatite: green oxidation of alcohol and reduction of nitroarenes in water. Appl. Sci. 9, 1–12 (2019). https://doi.org/10.3390/app9194183

    Article  CAS  Google Scholar 

  171. J. Xu, T. White, P. Li, C. He, Y.F. Han, Hydroxyapatite foam as a catalyst for formaldehyde combustion at room temperature. J. Am. Chem. Soc. 132(38), 13172–13173 (2010). https://doi.org/10.1021/ja1058923

    Article  CAS  Google Scholar 

  172. https://www.ceramicindustry.com/ceramic-materials-properties-charts/. Accessed January 1, 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud F. Zawrah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zawrah, M.F., Taha, M.A., Youness, R.A. (2024). Advanced Ceramics: Stages of Development. In: Ikhmayies, S.J. (eds) Advanced Ceramics. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-43918-6_1

Download citation

Publish with us

Policies and ethics