Skip to main content

Improved Multi-shot Diffusion-Weighted MRI with Zero-Shot Self-supervised Learning Reconstruction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Diffusion MRI is commonly performed using echo-planar imaging (EPI) due to its rapid acquisition time. However, the resolution of diffusion-weighted images is often limited by magnetic field inhomogeneity-related artifacts and blurring induced by \(T_2\)- and \(T_2^{*}\)-relaxation effects. To address these limitations, multi-shot EPI (msEPI) combined with parallel imaging techniques is frequently employed. Nevertheless, reconstructing msEPI can be challenging due to phase variation between multiple shots. In this study, we introduce a novel msEPI reconstruction approach called zero-MIRID (zero-shot self-supervised learning of Multi-shot Image Reconstruction for Improved Diffusion MRI). This method jointly reconstructs msEPI data by incorporating deep learning-based image regularization techniques. The network incorporates CNN denoisers in both k- and image-spaces, while leveraging virtual coils to enhance image reconstruction conditioning. By employing a self-supervised learning technique and dividing sampled data into three groups, the proposed approach achieves superior results compared to the state-of-the-art parallel imaging method, as demonstrated in an in-vivo experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2019)

    Article  Google Scholar 

  2. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL-MUSSELS: model-based deep learning for multishot Sensitivity-Encoded diffusion MRI. IEEE Trans. Med. Imaging 39(4), 1268–1277 (2020)

    Article  Google Scholar 

  3. Akçakaya, M., Moeller, S., Weingärtner, S., Uğurbil, K.: Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: database-free deep learning for fast imaging. Magn. Reson. Med. 81(1), 439–453 (2019)

    Article  Google Scholar 

  4. Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? neuroimage 34(1), 144–155 (2007)

    Google Scholar 

  5. Blaimer, M., Gutberlet, M., Kellman, P., Breuer, F.A., Köstler, H., Griswold, M.A.: Virtual coil concept for improved parallel MRI employing conjugate symmetric signals. Mag. Resonance Med.: Off. J. Int. Society Mag. Resonance Med. 61(1), 93–102 (2009)

    Article  Google Scholar 

  6. Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H.J., Hwang, D.: Kiki-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 80(5), 2188–2201 (2018)

    Article  Google Scholar 

  7. Haldar, J.P.: Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI. IEEE Trans. Med. Imaging 33(3), 668–681 (2014)

    Article  Google Scholar 

  8. Haldar, J.P., Zhuo, J.: P-LORAKS: Low-rank modeling of local k-space neighborhoods with parallel imaging data. Magn. Reson. Med. 75(4), 1499–1514 (2016)

    Article  Google Scholar 

  9. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated mri data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  10. Han, Y., Sunwoo, L., Ye, J.C.: \(k\)-space deep learning for accelerated MRI. IEEE Trans. Med. Imaging 39(2), 377–386 (2019)

    Article  Google Scholar 

  11. Hernändez, M., et al.: Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using Gpus. PLoS ONE 8(4), e61892 (2013)

    Article  Google Scholar 

  12. Jbabdi, S., Sotiropoulos, S.N., Savio, A.M., Graña, M., Behrens, T.E.: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magn. Reson. Med. 68(6), 1846–1855 (2012)

    Article  Google Scholar 

  13. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  14. Kim, T.H., Setsompop, K., Haldar, J.P.: Loraks makes better sense: phase-constrained partial fourier sense reconstruction without phase calibration. Magn. Reson. Med. 77(3), 1021–1035 (2017)

    Article  Google Scholar 

  15. Kim, T., Haldar, J.: Loraks software version 2.0: Faster implementation and enhanced capabilities. University of Southern California, Los Angeles, CA, Tech. Rep. USC-SIPI-443 (2018)

    Google Scholar 

  16. Le Bihan, D., Iima, M.: Diffusion magnetic resonance imaging: what water tells us about biological tissues. PLoS Biol. 13(7), e1002203 (2015)

    Article  Google Scholar 

  17. Lobos, R.A., et al.: Robust autocalibrated structured low-rank epi ghost correction. Magn. Reson. Med. 85(6), 3403–3419 (2021)

    Article  Google Scholar 

  18. Lobos, R.A., Kim, T.H., Hoge, W.S., Haldar, J.P.: Navigator-free epi ghost correction with structured low-rank matrix models: New theory and methods. IEEE Trans. Med. Imaging 37(11), 2390–2402 (2018)

    Article  Google Scholar 

  19. Mani, M., Jacob, M., Kelley, D., Magnotta, V.: Multi-shot sensitivity-encoded diffusion data recovery using structured low-rank matrix completion (MUSSELS). Magn. Reson. Med. 78(2), 494–507 (2017)

    Article  Google Scholar 

  20. Setsompop, K., et al.: High-resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (g s lider-sms). Magn. Reson. Med. 79(1), 141–151 (2018)

    Article  Google Scholar 

  21. Setsompop, K., Gagoski, B.A., Polimeni, J.R., Witzel, T., Wedeen, V.J., Wald, L.L.: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med. 67(5), 1210–1224 (2012)

    Article  Google Scholar 

  22. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Article  Google Scholar 

  23. Woolrich, M.W., et al.: Bayesian analysis of neuroimaging data in FSL. Neuroimage 45(1), S173–S186 (2009)

    Article  MathSciNet  Google Scholar 

  24. Yaman, B., Hosseini, S.A.H., Akcakaya, M.: Zero-Shot Self-Supervised learning for MRI reconstruction. In: International Conference on Learning Representations (2022)

    Google Scholar 

  25. Yaman, B., Hosseini, S.A.H., Moeller, S., Ellermann, J., Uğurbil, K., Akçakaya, M.: Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. Magn. Reson. Med. 84(6), 3172–3191 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by research grants NIH R01 EB028797, R01 EB032378, R01 HD100009, R03 EB031175, U01 EB026996, U01 DA055353, P41 EB030006, and the NVidia Corporation for computing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaejin Cho .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2044 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, J., Jun, Y., Wang, X., Kobayashi, C., Bilgic, B. (2023). Improved Multi-shot Diffusion-Weighted MRI with Zero-Shot Self-supervised Learning Reconstruction. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics