Skip to main content

Masked Vision and Language Pre-training with Unimodal and Multimodal Contrastive Losses for Medical Visual Question Answering

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

  • 5743 Accesses

Abstract

Medical visual question answering (VQA) is a challenging task that requires answering clinical questions of a given medical image, by taking consider of both visual and language information. However, due to the small scale of training data for medical VQA, pre-training fine-tuning paradigms have been a commonly used solution to improve model generalization performance. In this paper, we present a novel self-supervised approach that learns unimodal and multimodal feature representations of input images and text using medical image caption datasets, by leveraging both unimodal and multimodal contrastive losses, along with masked language modeling and image text matching as pre-training objectives. The pre-trained model is then transferred to downstream medical VQA tasks. The proposed approach achieves state-of-the-art (SOTA) performance on three publicly available medical VQA datasets with significant accuracy improvements of 2.2%, 14.7%, and 1.7% respectively. Besides, we conduct a comprehensive analysis to validate the effectiveness of different components of the approach and study different pre-training settings. Our codes and models are available at https://github.com/pengfeiliHEU/MUMC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen, B.D., Do, T.T., Nguyen, B.X., Do, T., Tjiputra, E., Tran, Q.D.: Overcoming data limitation in medical visual question answering. MICCAI 4, 522–530 (2019). https://doi.org/10.1007/978-3-030-32251-9_57

    Article  Google Scholar 

  2. Do, T., Nguyen, B.X., Tjiputra, E., Tran, M., Tran, Q.D., Nguyen, A.: Multiple meta-model quantifying for medical visual question answering. MICCAI 5, 64–74 (2021). https://doi.org/10.1007/978-3-030-87240-3_7

    Article  Google Scholar 

  3. Pelka, O., Koitka, S., Rückert, J., Nensa, F., Friedrich, C.M.: Radiology objects in context (ROCO): a multimodal image dataset. In: Stoyanov, D., et al. Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS CVII STENT 2018 2018 2018. Lecture Notes in Computer Science, vol. 11043, pp. 180–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01364-6_20

  4. Subramanian, S., Wang, L.L., Bogin, B., et al.: Medicat: a dataset of medical images, captions, and textual references. In: Findings of the Association for Computational Linguistics, EMNLP 2020, pp. 2112–2120 (2020). https://github.com/allenai/medicat

  5. Ruckert, J., Abacha, A.B., Herrera, A.G., et al.: Overview of ImageCLEF medical 2022-caption prediction and concept detection. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction (2022). https://www.imageclef.org/2022

  6. Liu, B., Zhan, L.M., Wu, X.M., et al.: Contrastive pre-training and representation distillation for medical visual question answering based on radiology images. MICCAI 2, 210–220 (2021). https://doi.org/10.1007/978-3-030-87196-3_20

    Article  Google Scholar 

  7. Radford, A., Kim, J.W., Hallacy, C., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)

    Google Scholar 

  8. Eslami, S., de Melo, G., Meinel, C.: Does clip benefit visual question answering in the medical domain as much as it does in the general domain? arXiv preprint arXiv: 2112.13906 (2021)

    Google Scholar 

  9. Cong, F., Xu, S., Li, G., et al.: Caption-aware medical VQA via semantic focusing and progressive cross-modality comprehension. ACM Multimedia, pp. 3569–3577 (2022)

    Google Scholar 

  10. Chen, Z., Du, Y., Hu, J., et al.: Multi-modal masked autoencoders for medical vision-and-language pre-training. MICCAI 5, 679–689 (2022). https://doi.org/10.1007/978-3-031-16443-9_65

    Article  Google Scholar 

  11. Lau, J.J., Gayen, S., Abacha, A.B., Demner-Fushman, D.: A dataset of clinically generated visual questions and answers about radiology images. Sci. Data 5, 1–10 (2018). https://osf.io/bd96f

  12. He, X., et al.: Towards visual question answering on pathology images. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP, pp. 708–718 (2021). https://github.com/UCSD-AI4H/PathVQA

  13. Liu, B., Zhan, L.M., Xu, L., et al.: Slake: a semantically-labeled knowledge-enhanced dataset for medical visual question answering. In: ISBI, IEEE, pp. 1650–1654 (2021). https://www.med-vqa.com/slake/

  14. Selvaraju, R.R., Cogswell, M., Das, A., et al.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)

    Google Scholar 

  15. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: NeurIPS 30 (2017)

    Google Scholar 

  16. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16 × 16 words: Transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  17. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  18. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. arXiv preprint arXiv: 1508.07909 (2015)

    Google Scholar 

  19. He, K., Fan, H., Wu, Y., et al.: Girshick: momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9726–9735 (2020)

    Google Scholar 

  20. Li, J., Selvaraju, R.R., Gotmare, A., et al.: Align before fuse: Vision and language representation learning with momentum distillation. Adv. Neural. Inf. Process. Syst. 34, 9694–9705 (2021)

    Google Scholar 

  21. Li, J., Li, D, Xiong, C, et al.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning. PMLR, pp. 12888–12900 (2022)

    Google Scholar 

  22. He, K., Chen, X., Xie, S., et al.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15979–15988 (2022)

    Google Scholar 

  23. Li, Y., Fan, H., Hu, R., et al.: Scaling Language-Image Pre-training via Masking. arXiv preprint arXiv: 2212.00794 (2022)

    Google Scholar 

  24. Cubuk, E.D., Zoph, B., Shlens, J., et al.: Randaugment: practical automated data augmentation with a reduced search space. In: CVPR Workshops, pp. 3008–3017 (2020)

    Google Scholar 

  25. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv: 1711.05101 (2017)

    Google Scholar 

  26. Pan, H., He, S., Zhang, K., et al.: AMAM: an attention-based multimodal alignment model for medical visual question answering. Knowl.-Based Syst. 255, 109763 (2022)

    Article  Google Scholar 

  27. Gong, H., Chen, G., Mao, M., Li, Z., Li, G.: VQAMix: conditional triplet mixup for medical visual question answering. IEEE Trans. Med. Imaging 41(11), 3332–3343 (2022)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Natural Science Foundation of Heilongjiang Province under grant number LH2021F015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu or Shenjun Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, P., Liu, G., He, J., Zhao, Z., Zhong, S. (2023). Masked Vision and Language Pre-training with Unimodal and Multimodal Contrastive Losses for Medical Visual Question Answering. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics