Skip to main content

Robust Segmentation via Topology Violation Detection and Feature Synthesis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Despite recent progress of deep learning-based medical image segmentation techniques, fully automatic results often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g., closed surfaces. Although modern image segmentation methods show promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union, these metrics do not reflect the correctness of a segmentation in terms of a required topological genus. Existing approaches estimate and constrain the topological structure via persistent homology (PH). However, these methods are not computationally efficient as calculating PH is not differentiable. To overcome this problem, we propose a novel approach for topological constraints based on the multi-scale Euler Characteristic (EC). To mitigate computational complexity, we propose a fast formulation for the EC that can inform the learning process of arbitrary segmentation networks via topological violation maps. Topological performance is further facilitated through a corrective convolutional network block. Our experiments on two datasets show that our method can significantly improve topological correctness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/smilell/Topology-aware-Segmentation-using-Euler-Characteristic.

  2. 2.

    www.developingconnectome.org.

References

  1. Byrne, N., Clough, J.R., Valverde, I., Montana, G., King, A.P.: A persistent homology-based topological loss for CNN-based multiclass segmentation of CMR. IEEE Trans. Med. Imaging 42(1), 3–14 (2022)

    Article  Google Scholar 

  2. Clough, J.R., Byrne, N., Oksuz, I., Zimmer, V.A., Schnabel, J.A., King, A.P.: A topological loss function for deep-learning based image segmentation using persistent homology. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 8766–8778 (2020)

    Article  Google Scholar 

  3. Clough, J.R., Oksuz, I., Byrne, N., Schnabel, J.A., King, A.P.: Explicit topological priors for deep-learning based image segmentation using persistent homology. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 16–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_2

    Chapter  Google Scholar 

  4. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)

    Google Scholar 

  5. de Dumast, P., Kebiri, H., Atat, C., Dunet, V., Koob, M., Cuadra, M.B.: Segmentation of the cortical plate in fetal brain MRI with a topological loss. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 200–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_19

    Chapter  Google Scholar 

  6. Funke, J., et al.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1669–1680 (2018)

    Article  Google Scholar 

  7. Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 100(5), 551–561 (1971)

    Article  MATH  Google Scholar 

  8. Hu, X.: Structure-aware image segmentation with homotopy warping. Adv. Neural. Inf. Process. Syst. 35, 24046–24059 (2022)

    Google Scholar 

  9. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  10. Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015)

    Article  Google Scholar 

  11. Kaji, S., Sudo, T., Ahara, K.: Cubical Ripser: software for computing persistent homology of image and volume data. arXiv:2005.12692 (2020)

  12. Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B.: Boundary loss for highly unbalanced segmentation. In: International Conference on Medical Imaging with Deep Learning, pp. 285–296. PMLR (2019)

    Google Scholar 

  13. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)

    Article  Google Scholar 

  14. Lee, M.C.H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: Tetris: Template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging 38(11), 2596–2606 (2019)

    Article  Google Scholar 

  15. Li, L., et al.: Fetal cortex segmentation with topology and thickness loss constraints. In: Baxter, J.S.H., et al. (eds.) Ethical and Philosophical Issues in Medical Imaging, Multimodal Learning and Fusion Across Scales for Clinical Decision Support, and Topological Data Analysis for Biomedical Imaging. EPIMI ML-CDS TDA4BiomedicalImaging 2022. LNCS, vol. 13755. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23223-7_11

  16. Maier-Hein, L., Menze, B., et al.: Metrics reloaded: pitfalls and recommendations for image analysis validation. arXiv. org (2206.01653) (2022)

  17. Makropoulos, A.: The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 173, 88–112 (2018)

    Article  Google Scholar 

  18. Maria, C., Boissonnat, J.-D., Glisse, M., Yvinec, M.: The Gudhi library: simplicial complexes and persistent homology. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 167–174. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_28

    Chapter  Google Scholar 

  19. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Med. Image Anal. 1(2), 91–108 (1996)

    Article  Google Scholar 

  20. Oktay, O., et al.: Anatomically constrained neural networks (acnns): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imag. 37(2), 384–395 (2017)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021)

    Google Scholar 

  23. Stucki, N., Paetzold, J.C., Shit, S., Menze, B., Bauer, U.: Topologically faithful image segmentation via induced matching of persistence barcodes. arXiv preprint arXiv:2211.15272 (2022)

  24. Stucki, N., Paetzold, J.C., Shit, S., Menze, B., Bauer, U.: Topologically faithful image segmentation via induced matching of persistence barcodes. In: International Conference on Machine Learning, pp. 32698–32727. PMLR (2023)

    Google Scholar 

  25. Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics. Springer, NY (1992). https://doi.org/10.1007/978-1-4612-4380-9_16

  26. Yao, B., He, L., Kang, S., Chao, Y., Zhao, X.: A novel bit-quad-based Euler number computing algorithm. Springerplus 4, 1–16 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by Lee Family Scholarship from Imperial College London. HPC resources are provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under the NHR project b143dc. NHR funding is provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the German Research Foundation (DFG) - 440719683. Support was also received by the ERC - project MIA-NORMAL 101083647 and DFG KA 5801/2-1, INST 90/1351-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1479 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L. et al. (2023). Robust Segmentation via Topology Violation Detection and Feature Synthesis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics