Skip to main content

SimPLe: Similarity-Aware Propagation Learning for Weakly-Supervised Breast Cancer Segmentation in DCE-MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

Abstract

Breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays an important role in the screening and prognosis assessment of high-risk breast cancer. The segmentation of cancerous regions is essential useful for the subsequent analysis of breast MRI. To alleviate the annotation effort to train the segmentation networks, we propose a weakly-supervised strategy using extreme points as annotations for breast cancer segmentation. Without using any bells and whistles, our strategy focuses on fully exploiting the learning capability of the routine training procedure, i.e., the train - fine-tune - retrain process. The network first utilizes the pseudo-masks generated using the extreme points to train itself, by minimizing a contrastive loss, which encourages the network to learn more representative features for cancerous voxels. Then the trained network fine-tunes itself by using a similarity-aware propagation learning (SimPLe) strategy, which leverages feature similarity between unlabeled and positive voxels to propagate labels. Finally the network retrains itself by employing the pseudo-masks generated using previous fine-tuned network. The proposed method is evaluated on our collected DCE-MRI dataset containing 206 patients with biopsy-proven breast cancers. Experimental results demonstrate our method effectively fine-tunes the network by using the SimPLe strategy, and achieves a mean Dice value of 81%. Our code is publicly available at https://github.com/Abner228/SmileCode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have tried different amount of training data to investigate the segmentation performance of the fully-supervised network. The results showed that when using 21, 42, 63 scans for training, the Dice results changed very little, within 0.3%. Therefore, to include more testing data, we chose to use 21 (10%) out of 206 scans for training.

References

  1. Ashraf, A.B., Gavenonis, S.C., Daye, D., Mies, C., Rosen, M.A., Kontos, D.: A multichannel markov random field framework for tumor segmentation with an application to classification of gene expression-based breast cancer recurrence risk. IEEE Trans. Med. Imaging 32(4), 637–648 (2012)

    Article  Google Scholar 

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dorent, R., et al.: Scribble-based domain adaptation via co-segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 479–489. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_47

    Chapter  Google Scholar 

  5. Dorent, R., et al.: Inter extreme points geodesics for end-to-end weakly supervised image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 615–624. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_57

    Chapter  Google Scholar 

  6. Du, H., Dong, Q., Xu, Y., Liao, J.: Weakly-supervised 3D medical image segmentation using geometric prior and contrastive similarity. arXiv preprint arXiv:2302.02125 (2023)

  7. Gao, Y., Zhao, Y., Luo, X., Hu, X., Liang, C.: Dense encoder-decoder network based on two-level context enhanced residual attention mechanism for segmentation of breast tumors in magnetic resonance imaging. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine, pp. 1123–1129. IEEE (2019)

    Google Scholar 

  8. Giaquinto, A.N., et al.: Breast cancer statistics, 2022. CA Cancer J. Clin. 72(6), 524–541 (2022)

    Google Scholar 

  9. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  10. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. Adv. Neural Inf. Process. Syst. 17, 1–8 (2004)

    Google Scholar 

  11. Gubern-Mérida, A., et al.: Automated localization of breast cancer in DCE-MRI. Med. Image Anal. 20(1), 265–274 (2015)

    Article  Google Scholar 

  12. Jiang, Y., Edwards, A.V., Newstead, G.M.: Artificial intelligence applied to breast MRI for improved diagnosis. Radiology 298(1), 38–46 (2021)

    Article  Google Scholar 

  13. Kervadec, H., Dolz, J., Wang, S., Granger, E., Ayed, I.B.: Bounding boxes for weakly supervised segmentation: global constraints get close to full supervision. In: Medical Imaging with Deep Learning, pp. 365–381 (2020)

    Google Scholar 

  14. Kim, J.Y., et al.: Kinetic heterogeneity of breast cancer determined using computer-aided diagnosis of preoperative MRI scans: relationship to distant metastasis-free survival. Radiology 295(3), 517–526 (2020)

    Article  Google Scholar 

  15. Lee, C.H., et al.: Breast cancer screening with imaging: recommendations from the society of breast imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J. Am. Coll. Radiol. 7(1), 18–27 (2010)

    Article  Google Scholar 

  16. Li, C., Sun, H., Liu, Z., Wang, M., Zheng, H., Wang, S.: Learning cross-modal deep representations for multi-modal MR image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 57–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_7

    Chapter  Google Scholar 

  17. Mann, R.M., Cho, N., Moy, L.: Breast MRI: state of the art. Radiology 292(3), 520–536 (2019)

    Article  Google Scholar 

  18. Meng, X., et al.: Volume-awareness and outlier-suppression co-training for weakly-supervised MRI breast mass segmentation with partial annotations. Knowl.-Based Syst. 258, 109988 (2022)

    Article  Google Scholar 

  19. Militello, C., et al.: Semi-automated and interactive segmentation of contrast-enhancing masses on breast DCE-MRI using spatial fuzzy clustering. Biomed. Signal Process. Control 71, 103113 (2022)

    Article  Google Scholar 

  20. Rezaei, Z.: A review on image-based approaches for breast cancer detection, segmentation, and classification. Expert Syst. Appl. 182, 115204 (2021)

    Article  Google Scholar 

  21. Roth, H.R., Yang, D., Xu, Z., Wang, X., Xu, D.: Going to extremes: weakly supervised medical image segmentation. Mach. Learn. Knowl. Extract. 3(2), 507–524 (2021)

    Article  Google Scholar 

  22. Sheth, D., Giger, M.L.: Artificial intelligence in the interpretation of breast cancer on MRI. J. Magn. Reson. Imaging 51(5), 1310–1324 (2020)

    Article  Google Scholar 

  23. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 30, 1–10 (2017)

    Google Scholar 

  24. Wang, H., Cao, J., Feng, J., Xie, Y., Yang, D., Chen, B.: Mixed 2D and 3D convolutional network with multi-scale context for lesion segmentation in breast DCE-MRI. Biomed. Signal Process. Control 68, 102607 (2021)

    Article  Google Scholar 

  25. Wang, S., et al.: Breast tumor segmentation in DCE-MRI with tumor sensitive synthesis. IEEE Trans. Neural Netw. Learn. Syst. 34, 4990–5001 (2021)

    Article  Google Scholar 

  26. Yushkevich, P.A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  27. Zeng, X., Huang, R., Zhong, Y., Xu, Z., Liu, Z., Wang, Y.: A reciprocal learning strategy for semisupervised medical image segmentation. Med. Phys. 50(1), 163–177 (2023)

    Article  Google Scholar 

  28. Zhang, J., Saha, A., Zhu, Z., Mazurowski, M.A.: Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomics. IEEE Trans. Med. Imaging 38(2), 435–447 (2018)

    Article  Google Scholar 

  29. Zheng, Y., Baloch, S., Englander, S., Schnall, M.D., Shen, D.: Segmentation and classification of breast tumor using dynamic contrast-enhanced MR images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 393–401. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75759-7_48

    Chapter  Google Scholar 

  30. Zhou, L., Wang, S., Sun, K., Zhou, T., Yan, F., Shen, D.: Three-dimensional affinity learning based multi-branch ensemble network for breast tumor segmentation in MRI. Pattern Recogn. 129, 108723 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 62071305, 61701312 and 81971631, and in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2022A1515011241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, Y., Wang, Y. (2023). SimPLe: Similarity-Aware Propagation Learning for Weakly-Supervised Breast Cancer Segmentation in DCE-MRI. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics