Skip to main content

BerDiff: Conditional Bernoulli Diffusion Model for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Medical image segmentation is a challenging task with inherent ambiguity and high uncertainty attributed to factors such as unclear tumor boundaries and multiple plausible annotations. The accuracy and diversity of segmentation masks are both crucial for providing valuable references to radiologists in clinical practice. While existing diffusion models have shown strong capacities in various visual generation tasks, it is still challenging to deal with discrete masks in segmentation. To achieve accurate and diverse medical image segmentation masks, we propose a novel conditional Bernoulli Diffusion model for medical image segmentation (BerDiff). Instead of using the Gaussian noise, we first propose to use the Bernoulli noise as the diffusion kernel to enhance the capacity of the diffusion model for binary segmentation tasks, resulting in more accurate segmentation masks. Second, by leveraging the stochastic nature of the diffusion model, our BerDiff randomly samples the initial Bernoulli noise and intermediate latent variables multiple times to produce a range of diverse segmentation masks, which can highlight salient regions of interest that can serve as a valuable reference for radiologists. In addition, our BerDiff can efficiently sample sub-sequences from the overall trajectory of the reverse diffusion, thereby speeding up the segmentation process. Extensive experimental results on two medical image segmentation datasets with different modalities demonstrate that our BerDiff outperforms other recently published state-of-the-art methods. Source code is made available at https://github.com/takimailto/BerDiff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amit, T., Shaharbany, T., Nachmani, E., Wolf, L.: SegDiff: image segmentation with diffusion probabilistic models. arXiv preprint arXiv:2112.00390 (2021)

  2. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  3. Austin, J., Johnson, D.D., Ho, J., Tarlow, D., van den Berg, R.: Structured denoising diffusion models in discrete state-spaces. Adv. Neural. Inf. Process. Syst. 34, 17981–17993 (2021)

    Google Scholar 

  4. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  5. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

    Chapter  Google Scholar 

  6. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  7. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  8. Haque, I.R.I., Neubert, J.: Deep learning approaches to biomedical image segmentation. Inform. Med. Unlocked 18, 100297 (2020)

    Article  Google Scholar 

  9. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) BrainLes 2021. LNCS, vol. 12962, pp. 272–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-08999-2_22

    Chapter  Google Scholar 

  10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  11. Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., Welling, M.: Argmax flows and multinomial diffusion: Learning categorical distributions. Adv. Neural. Inf. Process. Syst. 34, 12454–12465 (2021)

    Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Ji, W., et al.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12336–12346 (2021)

    Google Scholar 

  14. Kassapis, E., Dikov, G., Gupta, D.K., Nugteren, C.: Calibrated adversarial refinement for stochastic semantic segmentation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7037–7047 (2020)

    Google Scholar 

  15. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  16. Kohl, S.A., et al.: A hierarchical probabilistic U-Net for modeling multi-scale ambiguities. arXiv preprint arXiv:1905.13077 (2019)

  17. Lenchik, L., et al.: Automated segmentation of tissues using CT and MRI: a systematic review. Acad. Radiol. 26(12), 1695–1706 (2019)

    Article  Google Scholar 

  18. Liao, Z., Hu, S., Xie, Y., Xia, Y.: Modeling annotator preference and stochastic annotation error for medical image segmentation. arXiv preprint arXiv:2111.13410 (2021)

  19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  20. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  21. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022)

  22. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479–36494 (2022)

    Google Scholar 

  23. Selvan, R., Faye, F., Middleton, J., Pai, A.: Uncertainty quantification in medical image segmentation with normalizing flows. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 80–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_9

    Chapter  Google Scholar 

  24. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)

    Google Scholar 

  25. Wolleb, J., Sandkühler, R., Bieder, F., Valmaggia, P., Cattin, P.C.: Diffusion models for implicit image segmentation ensembles. In: International Conference on Medical Imaging with Deep Learning, pp. 1336–1348. PMLR (2022)

    Google Scholar 

  26. Wu, J., Fang, H., Zhang, Y., Yang, Y., Xu, Y.: MedSegDiff: medical image segmentation with diffusion probabilistic model. arXiv preprint arXiv:2211.00611 (2022)

  27. Zhang, L., et al.: Disentangling human error from ground truth in segmentation of medical images. Adv. Neural. Inf. Process. Syst. 33, 15750–15762 (2020)

    Google Scholar 

  28. Zhang, W., Zhang, X., Huang, S., Lu, Y., Wang, K.: PixelSeg: pixel-by-pixel stochastic semantic segmentation for ambiguous medical images. In: Proceedings of the \(30\)-th ACM International Conference on Multimedia, pp. 4742–4750 (2022)

    Google Scholar 

  29. Zhang, W., Zhang, X., Huang, S., Lu, Y., Wang, K.: A probabilistic model for controlling diversity and accuracy of ambiguous medical image segmentation. In: Proceedings of the \(30\)-th ACM International Conference on Multimedia, pp. 4751–4759 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by Natural Science Foundation of Shanghai (No. 21ZR1403600), National Natural Science Foundation of China (No. 62101136), Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01) and ZJLab, Shanghai Municipal of Science and Technology Project (No. 20JC1419500), and Shanghai Center for Brain Science and Brain-inspired Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongming Shan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4312 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, T., Wang, C., Shan, H. (2023). BerDiff: Conditional Bernoulli Diffusion Model for Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics