Skip to main content

Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Regular group convolutional neural networks (G-CNNs) have been shown to increase model performance and improve equivariance to different geometrical symmetries. This work addresses the problem of SE(3), i.e., roto-translation equivariance, on volumetric data. Volumetric image data is prevalent in many medical settings. Motivated by the recent work on separable group convolutions, we devise a SE(3) group convolution kernel separated into a continuous SO(3) (rotation) kernel and a spatial kernel. We approximate equivariance to the continuous setting by sampling uniform SO(3) grids. Our continuous SO(3) kernel is parameterized via RBF interpolation on similarly uniform grids. We demonstrate the advantages of our approach in volumetric medical image analysis. Our SE(3) equivariant models consistently outperform CNNs and regular discrete G-CNNs on challenging medical classification tasks and show significantly improved generalization capabilities. Our approach achieves up to a 16.5% gain in accuracy over regular CNNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our codebase can be accessed at: https://github.com/ThijsKuipers1995/gconv.

References

  1. Armato III, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Google Scholar 

  2. Bekkers, E.J., B-spline \(\{\rm CNN\}\)s on lie groups. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=H1gBhkBFDH

  3. Bekkers, E.J., Lafarge, M.W., Veta, M., Eppenhof, K.A.J., Pluim, J.P.W., Duits, R.: Roto-translation covariant convolutional networks for medical image analysis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 440–448. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_50

    Chapter  Google Scholar 

  4. Bilic, P., et al.: The liver tumor segmentation benchmark (lits). Med. Image Anal. 84, 102680 (2023)

    Google Scholar 

  5. Bogoni, L., et al.: Impact of a computer-aided detection (CAD) system integrated into a picture archiving and communication system (PACS) on reader sensitivity and efficiency for the detection of lung nodules in thoracic CT exams. J. Digit. Imaging 25(6), 771–781 (2012)

    Google Scholar 

  6. Cohen, T.: Learning transformation groups and their invariants. Ph.D. thesis. University of Amsterdam (2013)

    Google Scholar 

  7. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: International Conference on Machine Learning, pp. 2990–2999. PMLR (2016)

    Google Scholar 

  8. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Jin, L., et al.: Deep-learning-assisted detection and segmentation of rib fractures from CT scans: development and validation of FracNet. EBioMedicine 62, 103106 (2020)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations (2015)

    Google Scholar 

  11. Knigge, D.M., Romero, D.W., Bekkers, E.J.: Exploiting redundancy: separable group convolutional networks on lie groups. In: International Conference on Machine Learning, pp. 11359–11386. PMLR (2022)

    Google Scholar 

  12. Kondor, R., Trivedi, S.: On the generalization of equivariance and convolution in neural networks to the action of compact groups. In: International Conference on Machine Learning, pp. 2747–2755. PMLR (2018)

    Google Scholar 

  13. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  14. Qi, C.R., et al.: Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)

    Google Scholar 

  15. Renaud, N., et al.: DeepRank: a deep learning framework for data mining 3D protein-protein interfaces. Nat. Commun. 12(1), 1–8 (2021)

    Google Scholar 

  16. Romero, D.W., Lohit, S.: Learning Equivariances and Partial Equivariances From Data (2022). https://openreview.net/forum?id=jFfRcKVut98

  17. Sifre, L., Mallat, S.: Rotation, scaling and deformation invariant scattering for texture discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1233–1240 (2013)

    Google Scholar 

  18. Thomas, N., et al.: Tensor field networks: rotation-and translation equivariant neural networks for 3d point clouds. arXiv preprint arXiv:1802.08219 (2018)

  19. Weiler, M., et al.: 3D steerable CNNs: learning rotationally equivariant features in volumetric data. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  20. Winkels, M., Cohen, T.S.: 3D G-CNNs for pulmonary nodule detection. arXiv preprint arXiv:1804.04656 (2018)

  21. Winkels, M., Cohen, T.S.: 3D G-CNNs for pulmonary nodule detection. Med. Imaging Deep Learn. (2018). https://openreview.net/forum?id=H1sdHFiif

  22. Worrall, D., Brostow, G.: CubeNet: equivariance to 3D rotation and translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 585–602. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_35

    Chapter  Google Scholar 

  23. Worrall, D.E., et al.: Harmonic networks: deep translation and rotation equivariance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5028–5037 (2017)

    Google Scholar 

  24. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)

    Google Scholar 

  25. Xu, X., et al.: Efficient multiple organ localization in CT image using 3D region proposal network. IEEE Trans. Med. Imaging 38(8), 1885–1898 (2019)

    Google Scholar 

  26. Yang, J., Shi, R., Ni, B.: MedMNIST classification decathlon: a lightweight AutoML benchmark for medical image analysis. In: IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 191–195 (2021)

    Google Scholar 

  27. Yang, J., et al.: MedMNIST v2-a large-scale lightweight benchmark for 2D and 3D biomedical image classification. Sci. Data 10(1), 41 (2023)

    Google Scholar 

Download references

Acknowledgments

This work was part of the research program VENI with project “context-aware AI in medical image analysis” with number 17290, financed by the Dutch Research Council (NWO). We want to thank SURF for the use of the National Supercomputer Snellius. For providing financial support, we want to thank ELLIS and Qualcomm, and the University of Amsterdam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thijs P. Kuipers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuipers, T.P., Bekkers, E.J. (2023). Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics