Skip to main content

Localized Region Contrast for Enhancing Self-supervised Learning in Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Recent advancements in self-supervised learning have demonstrated that effective visual representations can be learned from unlabeled images. This has led to increased interest in applying self-supervised learning to the medical domain, where unlabeled images are abundant and labeled images are difficult to obtain. However, most self-supervised learning approaches are modeled as image level discriminative or generative proxy tasks, which may not capture the finer level representations necessary for dense prediction tasks like multi-organ segmentation. In this paper, we propose a novel contrastive learning framework that integrates Localized Region Contrast (LRC) to enhance existing self-supervised pre-training methods for medical image segmentation. Our approach involves identifying Super-pixels by Felzenszwalb’s algorithm and performing local contrastive learning using a novel contrastive sampling loss. Through extensive experiments on three multi-organ segmentation datasets, we demonstrate that integrating LRC to an existing self-supervised method in a limited annotation setting significantly improves segmentation performance. Moreover, we show that LRC can also be applied to fully-supervised pre-training methods to further boost performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  2. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation (2021)

    Google Scholar 

  3. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning (2020)

    Google Scholar 

  4. Chen, X., He, K.: Exploring simple Siamese representation learning. In: CVPR (2021)

    Google Scholar 

  5. Chen, X., et al.: A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Radiother. Oncol. 160, 175–184 (2021)

    Article  Google Scholar 

  6. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  8. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)

    Article  MATH  Google Scholar 

  9. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning. In: NeurIPS (2020)

    Google Scholar 

  10. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners (2021)

    Google Scholar 

  11. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9726–9735 (2020)

    Google Scholar 

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hu, X., Zeng, D., Xu, X., Shi, Y.: Semi-supervised contrastive learning for label-efficient medical image segmentation (2021)

    Google Scholar 

  15. Komodakis, N., Gidaris, S.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  17. Ma, J., et al.: Abdomenct-1k: is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44, 6695–6714 (2021)

    Article  Google Scholar 

  18. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  19. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding (2019)

    Google Scholar 

  20. Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervision with superpixels: training few-shot medical image segmentation without annotation (2020)

    Google Scholar 

  21. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  24. Tang, H., et al.: Clinically applicable deep learning framework for organs at risk delineation in CT images. Nat. Mach. Intell. 1, 1–12 (2019)

    Article  Google Scholar 

  25. Tang, H., Liu, X., Sun, S., Yan, X., Xie, X.: Recurrent mask refinement for few-shot medical image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3918–3928 (2021)

    Google Scholar 

  26. Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Dense contrastive learning for self-supervised visual pre-training. In: CVPR (2021)

    Google Scholar 

  27. Wu, Z., Xiong, Y., Stella, X.Y., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  28. Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P., Girshick, R.: Early convolutions help transformers see better (2021)

    Google Scholar 

  29. Yan, X., et al.: Representation recovering for self-supervised pre-training on medical images. In: WACV, pp. 2685–2695 (2023)

    Google Scholar 

  30. Yan, X., Tang, H., Sun, S., Ma, H., Kong, D., Xie, X.: AFTer-UNet: axial fusion transformer U-Net for medical image segmentation (2021)

    Google Scholar 

  31. You, C., et al.: Rethinking semi-supervised medical image segmentation: a variance-reduction perspective. arXiv preprint: arXiv:2302.01735 (2023)

  32. You, C., Dai, W., Min, Y., Staib, L., Duncan, J.S.: Bootstrapping semi-supervised medical image segmentation with anatomical-aware contrastive distillation. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds.) IPMI 2023. Lecture Notes in Computer Science, vol. 13939. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34048-2_49

    Chapter  Google Scholar 

  33. You, C., Zhao, R., Staib, L.H., Duncan, J.S.: Momentum contrastive voxel-wise representation learning for semi-supervised volumetric medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. Lecture Notes in Computer Science, vol. 13434. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_61

    Chapter  Google Scholar 

  34. You, C., Zhou, Y., Zhao, R., Staib, L., Duncan, J.S.: SimCVD: simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation. IEEE Transa. Med. Imaging 41, 2228–2237 (2022)

    Article  Google Scholar 

  35. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  36. Zhou, Z., Sodha, V., Pang, J., Gotway, M.B., Liang, J.: Models genesis (2020). https://doi.org/10.1016/j.media.2020.101840

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyi Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, X. et al. (2023). Localized Region Contrast for Enhancing Self-supervised Learning in Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics