Skip to main content

Efficient In-Memory Point Cloud Query Processing

  • Conference paper
  • First Online:
Recent Advances in 3D Geoinformation Science (3DGeoInfo 2023)

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Included in the following conference series:

  • 254 Accesses

Abstract

Point cloud data acquired via laser scanning or stereo matching of photogrammetry imagery has become an emerging and vital data source in an increasing research and application field. However, point cloud processing can be highly challenging due to an ever-increasing amount of points and the demand for handling the data in near real-time. In this paper, we propose an efficient in-memory point cloud processing solution and implementation demonstrating that the inherent technical identity of the memory location of a point (e.g., a memory pointer) is both sufficient and elegant to avoid gridding as long as the point cloud fits into the main memory of the computing system. We evaluate the performance and scalability of the system on three benchmark point cloud datasets (e.g., ETH 3D Point Cloud Dataset, Oakland 3D Point Cloud Dataset, and Kijkduin 4D Point Cloud Dataset) w.r.t different point cloud query patterns like k nearest neighbors, eigenvalue-based geometric feature extraction, and spatio-temporal filtering. Preliminary experiments show very promising results in facilitating faster and more efficient point cloud processing in many potential aspects. We hope the insights shared in the paper will substantially impact broader point cloud processing research as the approach helps to avoid memory amplifications.

This article was selected based on the results of a double-blind review of an extended abstract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/tum-bgd/pointcloudqueries.

References

  • Anders K, Winiwarter L, Lindenbergh R, Williams JG, Vos SE, Höfle B (2020) 4d objects-by-change: spatiotemporal segmentation of geomorphic surface change from lidar time series. ISPRS J Photogram Remote Sens 159:352–363. https://www.sciencedirect.com/science/article/pii/S0924271619302850

  • Besl PJ, McKay ND (1992) Method for registration of 3-D shapes. In: Schenker PS (ed) Sensor fusion IV: control paradigms and data structures, vol 1611. International society for optics and photonics, SPIE, pp 586 – 606. https://doi.org/10.1117/12.57955

  • Blomley R, Weinmann M, Leitloff J, Jutzi B (2014) Shape distribution features for point cloud analysis and a geometric histogram approach on multiple scales. ISPRS Ann Photogram Remote Sens Spatial Inf Sci II(3):9–16. https://isprs-annals.copernicus.org/articles/II-3/9/2014/

  • Brenner C (2016) Scalable estimation of precision maps in a mapreduce framework. In: Proceedings of the 24th ACM SIGSPATIAL international conference on advances in geographic information systems. SIGSPACIAL ’16, Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2996913.2996990

  • Bueno M, Martínez-Sánchez J, González-Jorge H, Lorenzo H (2016) Detection of geometric keypoints and its application to point cloud coarse registration. Int Arch Photogram Remote Sens Spatial Inf Sci 41:187–194

    Article  Google Scholar 

  • Chen Y, Medioni G (1991) Object modeling by registration of multiple range images. In: Proceedings 1991 IEEE international conference on robotics and automation, vol 3. pp 2724–2729

    Google Scholar 

  • Choy CB, Dong W, Koltun V (2020) Deep global registration. CoRR abs/2004.11540. https://arxiv.org/abs/2004.11540

  • Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113

    Article  Google Scholar 

  • Eitel JU, Höfle B, Vierling LA, Abellán A, Asner GP, Deems JS, Glennie CL, Joerg PC, LeWinter AL, Magney TS et al (2016) Beyond 3-d: the new spectrum of lidar applications for earth and ecological sciences. Remote Sens Environ 186:372–392

    Article  Google Scholar 

  • Elseberg J, Borrmann D, Nüchter A (2011) Efficient processing of large 3d point clouds. In: 2011 XXIII International symposium on information, communication and automation technologies, pp 1–7

    Google Scholar 

  • Fischer K, Simon M, Olsner F, Milz S, Gross HM, Mader P (2021) Stickypillars: robust and efficient feature matching on point clouds using graph neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 313–323

    Google Scholar 

  • Fürlinger K, Fuchs T, Kowalewski R (2016) DASH: A C++ PGAS library for distributed data structures and parallel algorithms. In: Proceedings of the 18th IEEE international conference on high performance computing and communications (HPCC 2016). Sydney, Australia, pp 983–990

    Google Scholar 

  • Gojcic Z, Zhou C, Wegner JD, Wieser A (2018) The perfect match: 3d point cloud matching with smoothed densities. CoRR abs/1811.06879. http://arxiv.org/abs/1811.06879

  • Gumhold S, Wang X, MacLeod R (2001) Feature extraction from point clouds. In: Proceedings of 10th international meshing roundtable 2001

    Google Scholar 

  • Huang R, Xu Y, Hoegner L, Stilla U (2022) Semantics-aided 3d change detection on construction sites using uav-based photogrammetric point clouds. Autom Construct 134:104057

    Article  Google Scholar 

  • Ioannou Y, Taati B, Harrap R, Greenspan M (2012) Difference of normals as a multi-scale operator in unorganized point clouds. In: 2012 Second international conference on 3D imaging, modeling, processing, visualization and transmission, pp 501–508

    Google Scholar 

  • Kammerl J, Blodow N, Rusu RB, Gedikli S, Beetz M, Steinbach E (2012) Real-time compression of point cloud streams. In: 2012 IEEE international conference on robotics and automation, pp 778–785

    Google Scholar 

  • Kromer RA, Abellán A, Hutchinson DJ, Lato M, Edwards T, Jaboyedoff M (2015) A 4d filtering and calibration technique for small-scale point cloud change detection with a terrestrial laser scanner. Remote Sens 7(10):13029–13052. https://www.mdpi.com/2072-4292/7/10/13029

  • Lee KH, Lee YJ, Choi H, Chung YD, Moon B (2012) Parallel data processing with mapreduce: a survey. ACM SIGMoD Record 40(4):11–20

    Article  Google Scholar 

  • Lokugam Hewage CN, Laefer DF, Vo AV, Le-Khac NA, Bertolotto M (2022) Scalability and performance of LiDAR point cloud data management systems: a state-of-the-art review. Remote Sens 14(20):5277. https://www.mdpi.com/2072-4292/14/20/5277

  • Munoz D, Bagnell JA, Vandapel N, Hebert M (2009) Contextual classification with functional max-margin markov networks. In: IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  • Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph 21(4):807–832

    Article  Google Scholar 

  • Pajić V, Govedarica M, Amović M (2018) Model of point cloud data management system in big data paradigm. ISPRS Int J Geo-Inf 7(7):265. http://www.mdpi.com/2220-9964/7/7/265

  • Polewski P, Yao W, Heurich M, Krzystek P, Stilla U (2018) Learning a constrained conditional random field for enhanced segmentation of fallen trees in als point clouds. ISPRS J Photogram Remote Sens 140:33–44. geospatial Computer Vision

    Google Scholar 

  • Pomerleau F, Liu M, Colas F, Siegwart R (2012) Challenging data sets for point cloud registration algorithms. Int J Robot Res 31(14):1705–1711

    Article  Google Scholar 

  • Qi CR, Su H, Mo K, Guibas LJ (2017) Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  • Qi CR, Yi L, Su H, Guibas LJ (2017) Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds) Advances in neural information processing systems. vol 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf

  • Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (fpfh) for 3d registration. In: 2009 IEEE international conference on robotics and automation, pp 3212–3217

    Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the detroit region. Econ Geogr 46:234–240. http://www.jstor.org/stable/143141

  • Vetrivel A, Gerke M, Kerle N, Nex F, Vosselman G (2018) Disaster damage detection through synergistic use of deep learning and 3d point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning. ISPRS J Photogram Remote Sens 140:45–59. https://www.sciencedirect.com/science/article/pii/S0924271616305913, geospatial Computer Vision

  • Vos S, Anders K, Kuschnerus M, Lindenbergh R, Höfle B, Aarninkhof S, de Vries S (2022) A high-resolution 4d terrestrial laser scan dataset of the kijkduin beach-dune system, the netherlands. Sci Data 9(1):191

    Article  Google Scholar 

  • Weis M, Gutjahr C, Rueda Ayala V, Gerhards R, Ritter C, Schölderle F (2008) Precision farming for weed management: techniques. Gesunde Pflanzen 60(4):171–181

    Article  Google Scholar 

  • Xie L, Furuhata T, Shimada K (2020) Multi-resolution graph neural network for large-scale pointcloud segmentation. CoRR abs/2009.08924. https://arxiv.org/abs/2009.08924

  • Xu Q, Xu Z, Philip J, Bi S, Shu Z, Sunkavalli K, Neumann U (2022) Point-nerf: point-based neural radiance fields. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5438–5448

    Google Scholar 

  • Xu Y, Boerner R, Yao W, Hoegner L, Stilla U (2019) Pairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets. ISPRS J Photogram Remote Sens 151:106–123

    Article  Google Scholar 

  • Yue X, Wu B, Seshia SA, Keutzer K, Sangiovanni-Vincentelli AL (2018) A lidar point cloud generator: from a virtual world to autonomous driving. In: Proceedings of the 2018 ACM on international conference on multimedia retrieval, pp 458–464

    Google Scholar 

  • Zhang R, Li G, Wiedemann W, Holst C (2022) Kdo-net: towards improving the efficiency of deep convolutional neural networks applied in the 3d pairwise point feature matching. Remote Sens 14(12). https://www.mdpi.com/2072-4292/14/12/2883

  • Zwally HJ, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D et al (2002) Icesat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Werner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teuscher, B. et al. (2024). Efficient In-Memory Point Cloud Query Processing. In: Kolbe, T.H., Donaubauer, A., Beil, C. (eds) Recent Advances in 3D Geoinformation Science. 3DGeoInfo 2023. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-031-43699-4_16

Download citation

Publish with us

Policies and ethics