Skip to main content

Sensing Climate Change Through Earth Observations: Perspectives at Global and National Level

  • Chapter
  • First Online:
Digital Agriculture

Abstract

The window to mitigate and adapt to climate change is closing very fast for humanity. Unless drastic measures are introduced and implemented with unambiguous policy oversight, the Earth is going to witness irreversible damage to biophysical systems to the peril of life on this planet. Emphatic arguments on access of climate alerts to everyone, by the United Nations, highlight the need to build a comprehensive system observing the trinity of the ocean, land and atmosphere. Earth observation systems comprising remote sensing in increasingly innovative interactions of energy and matter offer unprecedented scope of watching phenomenon across spatial scales. Coupling these observations with substantiated process models gives insights into future scenarios at reasonable levels of confidence. Current review attempts to comprehend remote sensing systems in place, for observing atmosphere followed by ocean and land phenomenon as well as the information systems, in Indian context, designed for application by varied users. Data and information derived by range of sensors on board Indian satellites are discussed, and latest understanding of vulnerability patterns in varied land cover contexts such as snow, water, crop, and forest is summarized for benefit of decisions across hierarchy of managing natural resources. However, a wide variety of phenomenon linked to climate change impact which could not be covered does not exclude the scope of applying Earth observation technology far and wide. Global and national perspectives, hence, deliberated herewith correspond to the generic know-how of the current technological scope and application to mostly operational needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alahacoon N, Edirisinghe M (2022) A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomat Nat Haz Risk 13(1):762–799

    Article  Google Scholar 

  • Arora M, De K, Chaudhury NR, Nanajkar M, Chauhan P, Pateriya B (2022) Climate change induced thermal stress caused recurrent coral bleaching over gulf of Kachchh and Malvan marine sanctuary, west coast of India. Climate Change in Asia and Africa: Examining the Biophysical and Social Consequences, and Society’s Responses 35

    Google Scholar 

  • Azarderakhsh M, Prakash S, Zhao Y, AghaKouchak A (2020) Satellite-based analysis of extreme land surface temperatures and diurnal variability across the hottest place on earth. IEEE Geosci Remote Sens Lett 17(12):2025–2029

    Article  Google Scholar 

  • Banger K, Tian H, Tao B, Lu C, Ren W, Yang J (2015) Magnitude, spatiotemporal patterns, and controls for soil organic carbon stocks in India during 1901–2010. Soil Sci Soc Am J 79(3):864–875

    Article  CAS  Google Scholar 

  • Barmpoutis P, Papaioannou P, Dimitropoulos K, Grammalidis NA (2020) Review on early Forest fire detection systems using optical remote sensing. Sensors 20(22):6442. https://doi.org/10.3390/s20226442

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell JR, Schultz LA, Molthan AL, Meyer FJ (2018) Investigations of Hail Damage Swaths using Various Satellite Remote Sensing Platforms. In Annual Meeting of the National Weather Association (No. MSFC-E-DAA-TN60390))

    Google Scholar 

  • Bhattacharyya T, Pal DK, Easter M, Batjes NH, Milne E, Gajbhiye KS et al (2007) Modelled soil organic carbon stocks and changes in the Indo-Gangetic Plains, India from 1980 to 2030. Agric Ecosyst Environ 122(1):84–94

    Article  CAS  Google Scholar 

  • Bolch T, Kulkarni A, Kaab A, Huggel C, Paul F, Cogley JG et al (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314

    Article  CAS  PubMed  Google Scholar 

  • Brown ME, De Beurs KM, Marshall M (2012) Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years. Remote Sens Environ 126:174–183

    Article  Google Scholar 

  • Bulkeley H, Castan Broto V (2013) Government by experiment? Global cities and the governing of climate change. Trans Inst Br Geogr 38(3):361–375

    Article  Google Scholar 

  • Camacho AE (2009) Adapting governance to climate change: managing uncertainty through a learning infrastructure. Emory LJ 59:1

    Google Scholar 

  • Canadian Space Agency (2022). https://letstalkscience.ca/educational-resources/backgrounders/7-ways-satellites-help-fight-climate-change

  • Candanosa RM (2022) NASA finds 2022 Arctic Winter Sea ice maximum extent 10th-lowest on record. scitechdaily.Com

    Google Scholar 

  • Chakraborty A, Seshasai MVR, Dadhwal VK (2014) Geo-spatial analysis of the temporal trends of kharif crop phenology metrics over India and its relationships with rainfall parameters. Environ Monit Assess 186(7):4531–4542

    Article  PubMed  Google Scholar 

  • Chakraborty A, Seshasai MVR, Rao SVC, Dadhwal VK (2017) Geo-spatial analysis of temporal trends of temperature and its extremes over India using daily gridded (1°× 1°) temperature data of 1969–2005. Theor Appl Climatol 130(1):133–149

    Article  Google Scholar 

  • Chakraborty A, Seshasai MVR, Reddy CS, Dadhwal VK (2018) Persistent negative changes in seasonal greenness over different forest types of India using MODIS time series NDVI data (2001–2014). Ecol Indic 85:887–903

    Article  Google Scholar 

  • Chaturvedi RK, Kattumuri R, Ravindranath D (2014) Mainstreaming adaptation to climate change in Indian policy planning. Int J Appl Econ Econ 22(1):23–56

    Google Scholar 

  • Chen R, Jones WL (2018, March) Creating a consistent multi-decadal oceanic TRMM-GPM brightness temperature data record. In: 2018 IEEE 15th specialist meeting on microwave radiometry and remote sensing of the environment (MicroRad). IEEE, pp 1–6

    Google Scholar 

  • Cleland EE, Chuine I, Menzel A (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365

    Article  PubMed  Google Scholar 

  • Climateinformation (n.d.) What do different RCPs mean?. https://climateinformation.org/wp-content/uploads/sites/6/2019/06/rcps.png. Accessed on 13 Dec 2022

  • Cracknell AP, Cracknell AP (2001) Remote sensing and climate change: role of earth observation. Springer, Berlin

    Google Scholar 

  • D’Mello JR, Prasanna KS (2018) Processes controlling the accelerated warming of the Arabian Sea. Int J Climatol 38(2):1074–1086

    Article  Google Scholar 

  • Das PK, Chakraborty A, Seshasai MV (2014) Spatial analysis of temporal trend of rainfall and rainy days during the Indian Summer Monsoon season using daily gridded (0.5o×0.5o) rainfall data for the period of 1971–2005. Meteorol Appl 21(3):481–493

    Article  Google Scholar 

  • Dubash NK, Raghunandan D, Sant G, Sreenivas A (2013) Indian climate change policy: exploring a co-benefits based approach. Econ Polit Wkly:47–61

    Google Scholar 

  • ESA (n.d.) Climate change. https://www.esa.int/Applications/Observing_the_Earth/Space_for_our_climate/Climate_change

  • Falloon P, Jones CD, Cerri CE, Al-Adamat R, Kamoni P, Bhattacharyya T et al (2007) Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agric Ecosyst Environ 122(1):114–124

    Article  CAS  Google Scholar 

  • Fei S, Morin RS, Oswalt CM, Liebhold AM (2019) Biomass losses resulting from insect and disease invasions in US forests. Proc Natl Acad Sci 116(35):17371–17376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forzieri G, Dakos V, McDowell NG et al (2022) Emerging signals of declining forest resilience under climate change. Nature 608:534–539. https://doi.org/10.1038/s41586-022-04959-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaddam VK, Boddapati R, Kumar T, Kulkarni AV, Bjornsson H (2022) Application of (“OTSU”) an image segmentation method for differentiation of snow and ice regions of glaciers and assessment of mass budget in Chandra basin, Western Himalaya using Remote Sensing and GIS techniques. Environ Monit Assess 194(5):1–18

    Article  Google Scholar 

  • GCOS (2021) The status of the Global Climate Observing System 2021: The GCOS status report (GCOS-240). World Meteorological Organization Rep. 384p. https://gcos.wmo.int/en/publications/gcos-status-report-2021

  • Glavovic BC, Smith TF, White I (2021) The tragedy of climate change science. Clim Dev:1–5

    Google Scholar 

  • Gouveia CM, Martins JP, Russo A, Durão R, Trigo IF (2022) Monitoring heat extremes across Central Europe using land surface temperature data records from SEVIRI/MSG. Remote Sens 14(14):3470

    Article  Google Scholar 

  • Gupta S (2015) Simulating climate change impact on soil erosion & soil carbon sequestration. M. Tech RS&GIS) thesis, Andhra University, Visakhapatnam

    Google Scholar 

  • Ha T, Shen Y, Duddu H, Johnson E, Shirtliffe SJ (2022) Quantifying hail damage in crops using Sentinel-2 imagery. Remote Sens 14(4):951

    Article  Google Scholar 

  • Halsnæs K, Larsen MAD, Kaspersen PS (2018) Climate change risks for severe storms in developing countries in the context of poverty and inequality in Cambodia. Nat Hazards 94:261–278. [CrossRef]

    Article  Google Scholar 

  • Hartmann H, Bastos A, Das AJ, Esquivel-Muelbert A, Hammond WM, Martínez-Vilalta J et al (2022) Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu Rev Plant Biol 73:673–702

    Article  CAS  PubMed  Google Scholar 

  • Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD et al (2018) Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol 218(1):15–28

    Article  PubMed  Google Scholar 

  • Hooker J, Duveiller G, Cescatti A (2018) A global dataset of air temperature derived from satellite remote sensing and weather stations. Scientific Data 5(1):1–11

    Article  Google Scholar 

  • Hulley GC, Malakar NK, Islam T, Freepartner RJ (2017) NASA's MODIS and VIIRS land surface temperature and emissivity products: a long-term and consistent earth system data record. IEEE J Select Topics Appl Earth Observ Remote Sens 11(2):522–535

    Article  Google Scholar 

  • IPCC (2022) Climate change 2022: mitigation of climate change. In: Shukla PR, Skea J, Slade R, Al Khourdajie A, van Diemen R, McCollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, Lisboa G, Luz S, Malley J (eds) Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY. https://doi.org/10.1017/9781009157926

    Chapter  Google Scholar 

  • Jain J, Mitran T (2020) A geospatial approach to assess climate change impact on soil organic carbon in a semi-arid region. Trop Ecol 61(3):412–428

    Article  CAS  Google Scholar 

  • Jasmin T, Desai AR, Pierce RB (2015) Estimating global per-capita carbon emissions with VIIRS nighttime lights satellite data. In: AGU fall meeting abstracts, vol. 2015, pp GC11B–G1029

    Google Scholar 

  • Jones PD, Moberg A (2003) Hemispherical and large scale surface air temperature variations; an extensive revision and an update to 2001. J Clim 16:206–223

    Article  Google Scholar 

  • Keen RM, Voelker SL, Wang SYS, Bentz BJ, Goulden ML, Dangerfield CR et al (2022) Changes in tree drought sensitivity provided early warning signals to the California drought and forest mortality event. Glob Chang Biol 28(3):1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Kopp RE, Kemp AC, Bittermann K, Horton BP, Donnelly JP, Gehrels WR et al (2016) Temperature-driven global sea-level variability in the common era. Proc Natl Acad Sci 113(11):E1434–E1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Manzoor S, Vishwakarma DK, Al-Ansari N, Kushwaha NL, Elbeltagi A et al (2022) Assessment of climate change impact on snowmelt runoff in Himalayan region. Sustainability 14(3):1150

    Article  Google Scholar 

  • Li T, Zhang Y, Chang C-P, Wang B (2001) On the relationship between Indian Ocean sea surface temperature and Asian summer monsoon. Geophys Res Lett 28(14):2843–2846

    Article  Google Scholar 

  • Lima CB, Prijith SS, Sesha Sai MV, Rao PV, Niranjan K, Ramana MV (2019) Retrieval and validation of cloud top temperature from the geostationary satellite INSAT-3D. Remote Sens 11(23):2811

    Article  Google Scholar 

  • Lindsey R, Dahlman L (2020) Climate Change: Ocean Heat Content). NOAA Climate.gov

  • Liu C, Tang Q, Xu Y, Wang C, Wang S, Wang H et al (2021) High-spatial-resolution nighttime light dataset acquisition based on volunteered passenger aircraft remote sensing. IEEE Trans Geosci Remote Sens 60:1–17

    CAS  Google Scholar 

  • Mazzoglio P, Laio F, Balbo S, Boccardo P, Disabato F (2019) Improving an extreme rainfall detection system with GPM IMERG data. Remote Sens 11(6):677

    Article  Google Scholar 

  • McCarl BA, Thayer AW, Jones JPH (2016) The challenge of climate change adaptation for agriculture: an economically oriented review. J Agric Appl Econ 48(4):321–344

    Article  Google Scholar 

  • McSweeney R (2015) Analysis: the most ‘cited’ climate change papers. https://www.carbonbrief.org

  • Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Chang Biol 7(6):657–666

    Article  Google Scholar 

  • Merchant CJ, EmMcbury O, Bulgin CE et al (2019) Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci Data 6:223. https://doi.org/10.1038/s41597-019-0236-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Midha N, Mathur PK (2010) Assessment of forest fragmentation in the conservation priority Dudhwa landscape India using FRAGSTATS computed class level metrics. J Indian Soc Remote Sens 38:487–500

    Article  Google Scholar 

  • Mitran T, Lal R, Mishra U, Meena RS, Ravisankar T, Sreenivas K (2018) 12 climate change impact on soil carbon stocks in India. Soil and Climate

    Google Scholar 

  • Mondal A, Khare D, Kundu S, Meena PK, Mishra PK, Shukla R (2015) Impact of climate change on future soil erosion in different slope, land use, and soil-type conditions in a part of the Narmada River basin, India. J Hydrol Eng 20(6):C5014003

    Article  Google Scholar 

  • Moody J (2022) Europe caught napping on climate change as heatwaves spread by Jessica Moody | 29 Jul 2022 | Climate change, Environment, Europe, News Decoder

    Google Scholar 

  • Minnett PJ, Alvera-Azcárateb A, Chin TM, Corlett GK, Gentemann CL, Karagali I, Li X, Marsouin A, Marullo S, Maturi E, Santoleri R, Picart SS, Steele M, Vazquez-Cuervo J (2019) Half a century of satellite remote sensing of sea-surface temperature, 111366. Remote Sens Environ 233. https://doi.org/10.1016/j.rse.2019.111366. ISSN 0034-4257,

  • Nagler T, Rott H, Malcher P, Müller F (2008) Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting. Remote Sens Environ 112(4):1408–1420

    Article  Google Scholar 

  • NASA (n.d.) Taking a global perspective on earth’s climate. https://climate.nasa.gov/nasa_science/history/

  • Nela BR, Singh G, Kulkarni AV (2023) Ice thickness distribution of Himalayan glaciers inferred from DInSAR-based glacier surface velocity. Environ Monit Assess 195(1):1–20

    Article  Google Scholar 

  • Nes EH et al (2016) What do you mean, ‘tipping point’? Trends Ecol Evol 31:902–904

    Article  PubMed  Google Scholar 

  • New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol 21:189–1922

    Article  Google Scholar 

  • Newburger (2020) Climate change is driving widespread forest death and creating shorter, younger trees. www.cnbc.com/2020/05/28/climate-change-is-driving-widespread-forest-death-creating-shorter-trees.html

  • NRSC (2022) National Information system for climate and environment Studies. https://www.nrsc.gov.in/sites/default/files/doc_to_html/NICES_brochure_final_July_2022.pdf

  • O’Carroll AG, Armstrong EM, Beggs HM, Bouali M, Casey KS, Corlett GK et al (2019) Observational needs of sea surface temperature. Front Mar Sci 6:420

    Article  Google Scholar 

  • Pandey R, Alatalo JM, Thapliyal K, Chauhan S, Archie KM, Gupta AK et al (2018) Climate change vulnerability in urban slum communities: investigating household adaptation and decision-making capacity in the Indian Himalaya. Ecol Indic 90:379–391

    Article  Google Scholar 

  • Parida BR, Pandey AC, Patel NR (2020) Greening and browning trends of vegetation in India and their responses to climatic and non-climatic drivers. Climate 8(8):92

    Google Scholar 

  • Penuelas J, Fiella I (2001) Response to a warming world. Science 294(5543):793–794

    Article  CAS  PubMed  Google Scholar 

  • Prijith SS, Rao PVN, Mohan M, Sesha Sai MVR, Ramana MV (2018) Trends of absorption, scattering and total aerosol optical depths over India and surrounding oceanic regions from satellite observations: role of local production, transport and atmospheric dynamics. Environ Sci Pollut Res 25:18147–18160. https://doi.org/10.1007/s11356-018-2032-0

    Article  Google Scholar 

  • Rahman MS, Di L (2020) A systematic review on case studies of remote-sensing-based flood crop loss assessment. Agriculture 10(4):131

    Article  Google Scholar 

  • Ramanathan V, Ramana M, Roberts G et al (2007) Warming trends in Asia amplified by brown cloud solar absorption. Nature 448:575–578. https://doi.org/10.1038/nature06019

    Article  CAS  PubMed  Google Scholar 

  • Rao KG, Goswami BN (1988) Interannual variations of sea surface temperature over the Arabian Sea and the Indian monsoon: a new perspective. Mon Weather Rev 116(3):558–568

    Article  Google Scholar 

  • Rao RR, Girish Kumar MS, Ravichandran M, Rao AR, Gopalakrishna VV, Thadathil P (2010) Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the Southeastern Arabian Sea during 1993–2006. Deep-Sea Res I Oceanogr Res Pap 57(1):1–13

    Article  Google Scholar 

  • Remya SN, Syed TH, Kulkarni AV, Anand R (2022) Manifestation of topography and climate variations on long-term glacier changes in the Alaknanda Basin of Central Himalaya, India. Geocarto Int:1–20

    Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Climate 15(13):1609–1625

    Google Scholar 

  • Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN (2015) Drying of Indian subcontinent by rapid Indian ocean warming and a weakening land-sea thermal gradient. Nat Commun 6(1):1–10

    Article  Google Scholar 

  • Roxy MK, Gnanaseelan C, Parekh A, Chowdary JS, Singh S, Modi A, Kakatkar R, Mohapatra S, Dhara C, Shenoi SC, Rajeevan M (2020) Indian ocean warming assessment of climate change over the Indian region: a report of the Ministry of Earth Sciences (MoES), Government of India ed R Krishnan et al. Springer, Singapore, pp 191–206

    Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  PubMed  Google Scholar 

  • Senf C, Buras A, Zang CS, Rammig A, Seidl R (2020) Excess forest mortality is consistently linked to drought across Europe. Nat Commun 11(1):1–8

    Article  Google Scholar 

  • Shetye SS, Kurian S, Gauns M, Vidya PJ (2019) 2015-16 ENSO contributed reduction in oil sardines along the Kerala coast, south-west India. Mar Ecol 40(6) https://onlinelibrary.wiley.com/doi/abs/10.1111/maec.12568

  • Shukla BP, Pal PK (2009) Automatic smoke detection using satellite imagery: preparatory to smoke detection from Insat-3D. Int J Remote Sens 2009, 30:9–22. [CrossRef]

    Google Scholar 

  • Singh R, Kumar R, Latief SU, Kumar R, Shekhar M (2022) Recession of Gaglu Glacier, Chandra Basin, Western Indian Himalaya. In: Rani S, Kumar R (eds) Climate change. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-92782-0_5

    Chapter  Google Scholar 

  • Sosa L, Justel A, Molina Í (2021) Detection of crop hail damage with a machine learning algorithm using time series of remote sensing data. Agronomy 11(10):2078

    Article  CAS  Google Scholar 

  • Sreenivas G, Mahesh P, Mahalakshmi DV, Kanchana AL, Chandra N, Patra PK, Dadhwal VK (2022) Seasonal and annual variations of CO2 and CH4 at Shadnagar, a semi-urban site. Sci Total Environ 819:153114

    Google Scholar 

  • Subrahmanyam B, Robinson IS (2000) Sea surface height variability in the Indian Ocean from TOPEX/POSEIDON altimetry and model simulations. Mar Geod 23(3):167–195

    Article  Google Scholar 

  • Taori A, Suryavanshi A, Pawar S et al (2022) Establishment of lightning detection sensors network in India: generation of essential climate variable and characterization of cloud-to-ground lightning occurrences. Nat Hazards 111:19–32

    Google Scholar 

  • Taori A, Suryavanshi A, Bothale RV (2023) Cloud-to-ground lightning occurrences over India: seasonal and diurnal characteristics deduced with ground-based lightning detection sensor network (LDSN). Nat Hazards 116:4037–4049

    Google Scholar 

  • Thapliyal A, Kimothi S, Taloor AK, Bisht MPS, Mehta P, Kothyari GC (2023) Glacier retreat analysis in the context of climate change impact over the Satopanth (SPG) and Bhagirathi-Kharak (BKG) g Newberger, 2020laciers in the Mana basin of the Central Himalaya, India: a geospatial approach. Geosystems and Geoenvironment 2(1):100128

    Article  Google Scholar 

  • Verron J, Bonnefond P, Aouf L, Birol F, Bhowmick SA, Calmant S, Conchy T, Crétaux J-F, Dibarboure G, Dubey AK, Faugère Y, Guerreiro K, Gupta PK, Hamon M, Jebri F, Kumar R, Morrow R, Pascual A, Pujol M-I, Rémy E, Rémy F, Smith WHF, Tournadre J, Vergara O (2018) The benefits of the Ka-band as evidenced from the SARAL/AltiKa altimetric mission: scientific applications. Remote Sens 10:163. https://doi.org/10.3390/rs10020163

    Article  Google Scholar 

  • Vibhute A, Halder S, Singh P, Parekh A, Chowdary JS, Gnanaseelan C (2020) Decadal variability of tropical Indian Ocean Sea surface temperature and its impact on the Indian summer monsoon. Theor Appl Climatol 141(1):551–566

    Article  Google Scholar 

  • Vignudelli S, Birol F, Benveniste J, Fu LL, Picot N, Raynal M, Roinard H (2019) Satellite altimetry measurements of sea level in the coastal zone. Surv Geophys 40(6):1319–1349

    Article  Google Scholar 

  • Vineetha G, Karati KK, Raveendran TV, Idrees Babu KK, Riyas C, Muhsin MI, Shihab BK, Simson C, Anil P (2018) Responses of the zooplankton community to peak and waning periods of El Niño 2015-2016 in Kavaratti reef ecosystem, northern Indian Ocean. Environ Monit Assess 190(8):1–22. https://doi.org/10.1007/s10661-018-6842-9

    Article  CAS  Google Scholar 

  • Wang J, Sun R, Zhang H, Xiao Z, Zhu A, Wang M et al (2021) New global MuSyQ GPP/NPP remote sensing products from 1981 to 2018. IEEE J Select Topics Appl Earth Observ Remote Sens 14:5596–5612

    Article  Google Scholar 

  • White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation response to interannual climatic variability. Glob Biogeochem Cycles 11(3):217–234

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to express gratitude for the support and insights provided for this task by Shri Bishwadip Gharai, Former Head of the Atmospheric Sciences Group. The kind support provided by Dr. Prakash Chauhan, Director of NRSC, Dr. K. Vinod Kumar, Deputy Director of RSA and Dr. Rajashree V. Bothale, Deputy Director of ECSA, in developing this review is greatly acknowledged. Suggestions on addressing critical impacts aspects by Dr. K. Vinod Kumar has improved the scope of the work immensely. We would also like to express our deep gratitude to the support extended by Dr. M V Ramana, Group Head of AS and LSP CSG, ECSA. The authors also thank Mr. Mahesh P. (ASD, ECSA) for his resourceful help in compilation of this document. Timely and valuable inputs by Dr. Rajadeep Roy, scientist at RRSC-E, Kolkata, have added relevant strength in this review. We also thank all the support and guidance provided by Dr. K M Reddy, Head of Rural Development Division of RSA. The authors also thank the effort of Dr. Suneetha Manne, Professor and Head of IT Department at Siddhartha Engineering College, Vijayawada, and his team in supporting the initial compilation of information using customized tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish S. Pujar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pujar, G.S., Taori, A., Chakraborty, A., Mitran, T. (2024). Sensing Climate Change Through Earth Observations: Perspectives at Global and National Level. In: Priyadarshan, P.M., Jain, S.M., Penna, S., Al-Khayri, J.M. (eds) Digital Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-031-43548-5_8

Download citation

Publish with us

Policies and ethics