Skip to main content

Optimisation of Link Traversal Query Processing over Distributed Linked Data through Adaptive Techniques

  • Conference paper
  • First Online:
The Semantic Web: ESWC 2023 Satellite Events (ESWC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13998))

Included in the following conference series:

  • 507 Accesses

Abstract

An increasing amount of distributed Linked Data is being made available at different locations, with varying formats, structures, interfaces and availability. Making use of that data through declarative query languages such as SPARQL requires query engines capable of executing queries over it. Efficiently executing queries over the data requires efficient query plans, yet prior access to the information for producing such plans may not be possible due to the distributed and dynamic nature of the data. Furthermore, the inability to be aware of all data sources at a given time, following links to discover data in the form of link traversal may be needed. Consequently, query planning and optimisation may need to be performed with limited information, and the initial plan may no longer be optimal. Discovering additional information and data sources during query execution and adjusting the execution based on such discoveries using adaptive query processing techniques therefore could help perform queries more efficiently. The aim of this work is to explore a variety of existing or potential new techniques and their combinations for query-relevant information acquisition and query plan adaptation within the context of distributed Linked Data. Already prior results from multiple studies have demonstrated the benefits of various such techniques within or beyond Linked Data and Link Traversal Query Processing, and this work seeks to build upon such results to realise the benefits of various techniques in practice to tackle performance-related challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SPARQL 1.1 overview. W3c recommendation, W3C (2013). https://www.w3.org/TR/sparql11-overview/

  2. Acosta, M., Vidal, M.-E.: Networks of linked data eddies: an adaptive web query processing engine for RDF data. In: Arenas, M., et al. (eds.) ISWC 2015, Part I. LNCS, vol. 9366, pp. 111–127. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_7

    Chapter  Google Scholar 

  3. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., et al. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_2

    Chapter  Google Scholar 

  4. Acosta, M., Vidal, M.-E., Sure-Vetter, Y.: Diefficiency metrics: measuring the continuous efficiency of query processing approaches. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017, Part II. LNCS, vol. 10588, pp. 3–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_1

    Chapter  Google Scholar 

  5. Aebeloe, C., Montoya, G., Hose, K.: Decentralized indexing over a network of RDF peers. In: Ghidini, C., et al. (eds.) ISWC 2019, Part I. LNCS, vol. 11778, pp. 3–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_1

    Chapter  Google Scholar 

  6. Aebeloe, C., Montoya, G., Hose, K.: ColChain: collaborative linked data networks. In: Proceedings of the Web Conference 2021, pp. 1385–1396 (2021)

    Google Scholar 

  7. Aebeloe, C., Montoya, G., Hose, K.: The lothbrok approach for SPARQL query optimization over decentralized knowledge graphs. arXiv preprint arXiv:2208.14692 (2022)

  8. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets with the void vocabulary (2011). https://www.w3.org/TR/void/

  9. Amsaleg, L., Tomasic, A., Franklin, M., Urhan, T.: Scrambling query plans to cope with unexpected delays. In: Fourth International Conference on Parallel and Distributed Information Systems, pp. 208–219 (1996). https://doi.org/10.1109/PDIS.1996.568681

  10. Angles, R., et al.: The LDBC social network benchmark. arXiv preprint arXiv:2001.02299 (2020)

  11. Antoshenkov, G., Ziauddin, M.: Query processing and optimization in oracle RDB. VLDB J. 5, 229–237 (1996)

    Article  Google Scholar 

  12. Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query processing. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 261–272 (2000)

    Google Scholar 

  13. Berners-Lee, T.: Design issues: linked data (2000). https://www.w3.org/DesignIssues/LinkedData.html

  14. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)

    Article  Google Scholar 

  15. Capadisli, S., Berners-Lee, T.: Web access control (2022). https://solidproject.org/TR/wac

  16. Cole, R.L., Graefe, G.: Optimization of dynamic query evaluation plans. In: Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, pp. 150–160 (1994)

    Google Scholar 

  17. Deshpande, A., Hellerstein, J.M., et al.: Lifting the burden of history from adaptive query processing. In: VLDB, pp. 948–959 (2004)

    Google Scholar 

  18. Deshpande, A., Ives, Z., Raman, V.: Adaptive query processing. Found. Trends Databases 1, 1–140 (2007). https://doi.org/10.1561/1900000001

    Article  Google Scholar 

  19. Ding, L., Rundensteiner, E.A., Heineman, G.T.: MJoin: a metadata-aware stream join operator. In: Proceedings of the 2nd International Workshop on Distributed Event-Based Systems, pp. 1–8 (2003)

    Google Scholar 

  20. Erling, O., et al.: The LDBC social network benchmark: Interactive workload. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 619–630 (2015)

    Google Scholar 

  21. Hartig, O.: Zero-knowledge query planning for an iterator implementation of link traversal based query execution. In: Antoniou, G., et al. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 154–169. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21034-1_11

    Chapter  Google Scholar 

  22. Hartig, O.: Linked data query processing based on link traversal (2014)

    Google Scholar 

  23. Hartig, O., Freytag, J.C.: Foundations of traversal based query execution over linked data. In: Proceedings of the 23rd ACM Conference on Hypertext and Social Media, pp. 43–52 (2012)

    Google Scholar 

  24. Hartig, O., Heese, R.: The SPARQL query graph model for query optimization. The Semantic Web: Research and Applications, pp. 564–578 (2007)

    Google Scholar 

  25. Hartig, O., Özsu, M.T.: Walking without a map: optimizing response times of traversal-based linked data queries (extended version) (2016)

    Google Scholar 

  26. Heling, L., Acosta, M.: Estimating characteristic sets for RDF dataset profiles based on sampling. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 157–175. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_10

    Chapter  Google Scholar 

  27. Ives, Z.G., Halevy, A.Y., Weld, D.S.: Adapting to source properties in processing data integration queries. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, SIGMOD 2004, pp. 395–406 (2004). https://doi.org/10.1145/1007568.1007613

  28. Ladwig, G., Tran, T.: Linked data query processing strategies. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 453–469. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_29

    Chapter  Google Scholar 

  29. Liu, M.: Cost-based efficient adaptive query processing for data streams. Ph.D. thesis, University of Pennsylvania (2012)

    Google Scholar 

  30. Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation for RDF queries with multiple joins. In: 2011 IEEE 27th International Conference on Data Engineering, pp. 984–994 (2011)

    Google Scholar 

  31. Prud’hommeaux, E., Bingham, J.: Shape trees specification. W3c editor’s draft, W3C (2020). https://shapetrees.org/TR/specification/

  32. Raman, V., Deshpande, A., Hellerstein, J.M.: Using state modules for adaptive query processing. In: Proceedings 19th International Conference on Data Engineering, pp. 353–364 (2003)

    Google Scholar 

  33. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a modular SPARQL query engine for the web. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 239–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_15, https://comunica.github.io/Article-ISWC2018-Resource/

  34. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Optimizing approximate membership metadata in triple pattern fragments for clients and servers. In: SSWS2020, vol. 2757, pp. 1–16 (2020)

    Google Scholar 

  35. Taelman, R., Verborgh, R.: Evaluation of link traversal query execution over decentralized environments with structural assumptions (2023). https://doi.org/10.48550/ARXIV.2302.06933, https://arxiv.org/abs/2302.06933

  36. Urhan, T., Franklin, M.J.: XJoin: a reactively-scheduled pipelined join operator (2000)

    Google Scholar 

  37. Vandenbussche, P.Y., Umbrich, J., Matteis, L., Hogan, A., Buil-Aranda, C.: SPARQLES: monitoring public SPARQL endpoints. Semant. Web 8(6), 1049–1065 (2017)

    Article  Google Scholar 

  38. Vander Sande, M., Verborgh, R., Van Herwegen, J., Mannens, E., Van de Walle, R.: Opportunistic linked data querying through approximate membership metadata. In: Arenas, M., et al. (eds.) ISWC 2015, Part I. LNCS, vol. 9366, pp. 92–110. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_6

    Chapter  Google Scholar 

  39. Verborgh, R.: Re-decentralizing the Web, for good this time. In: Seneviratne, O., Hendler, J. (eds.) Linking the World’s Information: A Collection of Essays on the Work of Sir Tim Berners-Lee. ACM (2022). https://ruben.verborgh.org/articles/redecentralizing-the-web/

  40. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface for the web. J. Web Semant. 37, 184–206 (2016)

    Article  Google Scholar 

  41. Wilschut, A.N., Apers, P.M.: Dataflow query execution in a parallel main-memory environment. Distrib. Parallel Databases 1, 103–128 (1993)

    Article  Google Scholar 

  42. Zagidulin, D., Sambra, A., Carvalho, M., Pavlik, E.: Solid application data discovery (2022). https://github.com/solid/solid/blob/main/proposals/data-discovery.md

Download references

Acknowledgements

The research for this work has been supported by SolidLab Vlaanderen (Flemish Government, EWI and RRF project VV023/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonni Hanski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hanski, J. (2023). Optimisation of Link Traversal Query Processing over Distributed Linked Data through Adaptive Techniques. In: Pesquita, C., et al. The Semantic Web: ESWC 2023 Satellite Events. ESWC 2023. Lecture Notes in Computer Science, vol 13998. Springer, Cham. https://doi.org/10.1007/978-3-031-43458-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43458-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43457-0

  • Online ISBN: 978-3-031-43458-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics