Skip to main content

Digital Twin and Extended Reality in Industrial Contexts: A Bibliometric Review

  • Conference paper
  • First Online:
Extended Reality (XR Salento 2023)

Abstract

Digital twin and extended reality technologies, including augmented reality, virtual reality and mixed reality, are among the key digital technologies of Industry 4.0. While digital twin enables the representation of the virtual counterpart of a physical system, the extended reality attempts to improve the user experience by augmenting the perception of the reality through digital information. The combined use of such technologies contributes to leverage the creativity of experts in collaboration with intelligent industrial systems. Although their benefits for industries are widely discussed in the literature, few studies are available on the implications of their combined use. Therefore, based on a systematic literature review and a bibliometric analysis, the paper aims to investigate the intersection of digital twin and extended reality technologies in industry, in order to discover the implications and reveal future research directions. Six main clusters resulted from the analysis: advanced digital services, extended robotized twin, virtualization, scalable analysis, multi-layered digitalization, digital lymph. Both academics and practitioners can benefit from such results in order to evaluate potential applications and to address their current research and activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slavkovic, N., Zivanovic, S., Milutinovic, D.: An indirect method of industrial robot programming for machining tasks based on STEP-NC. Int. J. Comput. Integrat. Manufact. 32(1), 43–57 (2019). https://doi.org/10.1080/0951192X.2018.1543952

    Article  Google Scholar 

  2. Frank, A.G., Dalenogare, L.S., Ayala, N.F.: Industry 4.0 technologies: implementation patterns in manufacturing companies. Int. J. Product. Econ. 210, 15–26 (2019). https://doi.org/10.1016/j.ijpe.2019.01.004

    Article  Google Scholar 

  3. Adriana Cárdenas-Robledo, L., Hernández-Uribe, O., Reta, C., Antonio Cantoral-Ceballos, J.: Extended reality applications in industry 4.0. – a systematic literature review. Telematics Inform. 73, 101863 (2022). https://doi.org/10.1016/j.tele.2022.101863

  4. Yang, C., et al.: Extended reality application framework for a digital-twin-based smart crane. Appl. Sci. 12(12), 6030 (2022). https://doi.org/10.3390/app12126030

    Article  Google Scholar 

  5. Attaran, M., Celik, B.G.: Digital twin: benefits, use cases, challenges, and opportunities. Decision Analy. J. 6, 100165 (2023). https://doi.org/10.1016/j.da-jour.2023.100165

    Article  Google Scholar 

  6. Maddikunta, P.K.R., et al.: Industry 5.0: a survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 26, 100257 (2022). https://doi.org/10.1016/j.jii.2021.100257

    Article  Google Scholar 

  7. Stacchio, L., Angeli, A., Marfia, G.: Empowering digital twins with extended reality collaborations. Virtual Real. Intell. Hardware 4(6), 487–505 (2022). https://doi.org/10.1016/j.vrih.2022.06.004

    Article  Google Scholar 

  8. Singh, M., Fuenmayor, E., Hinchy, E., Qiao, Y., Murray, N., Devine, D.: Digital twin: origin to future. ASI 4(2), 36 (2021). https://doi.org/10.3390/asi4020036

    Article  Google Scholar 

  9. Pires, F., Cachada, A., Barbosa, J., Moreira, A.P., Leitao, P.: Digital twin in industry 4.0: technologies, applications and challenges. In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, pp. 721–726. IEEE (2019). https://doi.org/10.1109/INDIN41052.2019.8972134

  10. Gartner, Digital Twin. Gartner Inc (2023). https://www.gart-ner.com/en/information-technology/glossary/digital-twin

  11. Shao, G., Helu, M.: Framework for a digital twin in manufacturing: scope and requirements. Manufact. Lett. 24, 105–107 (2020). https://doi.org/10.1016/j.mfglet.2020.04.004

    Article  Google Scholar 

  12. Shafto, M., et al.: DRAFT Modeling, Simulation, Information Technology & Processing Roadmap (2010). https://www.nasa.gov/pdf/501321main_TA11-MSITP-DRAFT-Nov2010-A1.pdf

  13. Schroeder, G., et al.: Visualising the digital twin using web services and augmented reality. In: 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), Poitiers, France, pp. 522–527. IEEE (2016). https://doi.org/10.1109/INDIN.2016.7819217

  14. Corallo, A., Del Vecchio, V.D., Lezzi, M., Morciano, P.: Shop floor digital twin in smart manufacturing: a systematic literature review. Sustainability 13(23), 12987 (2021). https://doi.org/10.3390/su132312987

    Article  Google Scholar 

  15. Corallo, A., et al.: Internet of things and shop-floor digital twin: an aerospace case study. In: 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split/Bol, Croatia: IEEE, pp. 1–6 (2022). https://doi.org/10.23919/SpliTech55088.2022.9854314

  16. Tao, F., et al.: Digital twin and its potential application exploration. Comput. Integrat. Manufact. Syst. 24(1) (2018)

    Google Scholar 

  17. Canedo, A.: Industrial IoT lifecycle via digital twins. In: Presented at the International Conference on Hardware/Software Codesign and System Synthesis, Pittsburgh, PA, USA (2016)

    Google Scholar 

  18. Liu, M., Fang, S., Dong, H., Xu, C.: Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 58, 346–361 (2021). https://doi.org/10.1016/j.jmsy.2020.06.017

    Article  Google Scholar 

  19. Yu, Y., Fan, S., Peng, G., Dai, S., Zhao, G.: Study on application of digital twin model in product configuration#br# management. Aeronaut. Manufact. Technol. 60(7), 41–45 (2017)

    Google Scholar 

  20. Weyer, S., Meyer, T., Ohmer, M., Gorecky, D., Zühlke, D.: Future modeling and simulation of CPS-based factories: an example from the automotive industry. IFAC-PapersOnLine 49(31), 97–102 (2016). https://doi.org/10.1016/j.ifacol.2016.12.168

    Article  Google Scholar 

  21. Tao, F., Zhang, M.: Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access 5, 20418–20427 (2017). https://doi.org/10.1109/ACCESS.2017.2756069

    Article  Google Scholar 

  22. Li, L., Li, H., Gu, F., Ding, N., Gu, X., Luo, G.: Multidisciplinary collaborative design modeling technologies for complex mechnical products based on digital twin. Comput. Integr. Manuf. Syst. 25(6), 1307–1319 (2019)

    Google Scholar 

  23. Anderl, R., Haag, S., Schützer, K., Zancul, E.: Digital twin technology – an approach for Industrie 4.0 vertical and horizontal lifecycle integration. it – Inf. Technol. 60(3), 125–132 (2018). https://doi.org/10.1515/itit-2017-0038

  24. Fast-Berglund, Å., Gong, L., Li, D.: Testing and validating extended reality (xr) technologies in manufacturing. Procedia Manufact. 25, 31–38 (2018). https://doi.org/10.1016/j.promfg.2018.06.054

    Article  Google Scholar 

  25. Lawson, G., Salanitri, D., Waterfield, B.: Future directions for the development of virtual reality within an automotive manufacturer. Appl. Ergon. 53, 323–330 (2016). https://doi.org/10.1016/j.apergo.2015.06.024

    Article  Google Scholar 

  26. Regenbrecht, H., Baratoff, G., Wilke, W.: Augmented reality projects in the automotive and aerospace industries. IEEE Comput. Grap. Appl. 25(6), 48–56 (2005). https://doi.org/10.1109/MCG.2005.124

    Article  Google Scholar 

  27. Krodel, T., Schott, V., Ovtcharova, J.: XR technology deployment in value creation. Appl. Sci. 13(8), 5048 (2023). https://doi.org/10.3390/app13085048

    Article  Google Scholar 

  28. Seth, A., Vance, J.M., Oliver, J.H.: Virtual reality for assembly methods prototyping: a review. Virtual Reality 15(1), 5–20 (2011). https://doi.org/10.1007/s10055-009-0153-y

    Article  Google Scholar 

  29. Pirker, J., Loria, E., Safikhani, S., Kunz, A., Rosmann, S.: Immersive virtual reality for virtual and digital twins: a literature review to identify state of the art and perspectives. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, pp. 114–115. IEEE (2022). https://doi.org/10.1109/VRW55335.2022.00035

  30. Oyekan, J.O., et al.: The effectiveness of virtual environments in developing collaborative strategies between industrial robots and humans. Robot. Comput.-Integrat. Manufact. 55, 41–54 (2019). https://doi.org/10.1016/j.rcim.2018.07.006

    Article  Google Scholar 

  31. Kaarlela, T., Pieska, S., Pitkaaho, T.: Digital twin and virtual reality for safety training. In: 2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Mariehamn, Finland, pp. 000115–000120. IEEE (2020). https://doi.org/10.1109/CogInfoCom50765.2020.9237812

  32. Wang, X., Liang, C.J., Menassa, C., Kamat, V.: Real-time process-level digital twin for collaborative human-robot construction work. In: Presented at the 37th International Symposium on Automation and Robotics in Construction, Kitakyushu, Japan (2020). https://doi.org/10.22260/ISARC2020/0212

  33. Eyre, J.M., Dodd, T.J., Freeman, C., Lanyon-Hogg, R., Lockwood, A.J., Scott, R.W.: Demonstration of an industrial framework for an implementation of a process digital twin. In: Volume 2: Advanced Manufacturing, Pittsburgh, Pennsylvania, USA: American Society of Mechanical Engineers, p. V002T02A070 (2018). https://doi.org/10.1115/IMECE2018-87361

  34. Coupry, C., Noblecourt, S., Richard, P., Baudry, D., Bigaud, D.: BIM-based digital twin and XR devices to improve maintenance procedures in smart buildings: a literature review. Appl. Sci. 11(15), 6810 (2021). https://doi.org/10.3390/app11156810

    Article  Google Scholar 

  35. Tranfield, D., Denyer, D., Smart, P.: Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 14(3), 207–222 (2003). https://doi.org/10.1111/1467-8551.00375

    Article  Google Scholar 

  36. Corallo, A., Crespino, A.M., Vecchio, V.D., Lazoi, M., Marra, M.: Understanding and defining dark data for the manufacturing industry. IEEE Trans. Eng. Manage. 70(2), 700–712 (2023). https://doi.org/10.1109/TEM.2021.3051981

    Article  Google Scholar 

  37. Donthu, N., Kumar, S., Pattnaik, D., Lim, W.M.: A bibliometric retrospection of marketing from the lens of psychology: insights from psychology & marketing. Psychol. Mark. 38(5), 834–865 (2021). https://doi.org/10.1002/mar.21472

    Article  Google Scholar 

  38. Shao, Y., Shi, X.: Bibliometric analysis and visualization of research progress in the diabetic nephropathy field from 2001 to 2021. Oxidative Med. Cell. Longevity 2023, 1–16 (2023). https://doi.org/10.1155/2023/4555609

    Article  Google Scholar 

  39. Corallo, A., Latino, M.E., Menegoli, M., De Devitiis, B., Viscecchia, R.: Human factor in food label design to support consumer healthcare and safety: a systematic literature review. Sustainability 11(15), 4019 (2019). https://doi.org/10.3390/su11154019

    Article  Google Scholar 

  40. Hu, K., et al.: Global research trends in food safety in agriculture and industry from 1991 to 2018: a data-driven analysis. Trends Food Sci. Technol. 85, 262–276 (2019). https://doi.org/10.1016/j.tifs.2019.01.011

    Article  Google Scholar 

  41. Van Oorschot, J.A.W.H., Hofman, E., Halman, J.I.M.: A bibliometric review of the innovation adoption literature. Technol. Forecast. Soc. Chang. 134, 1–21 (2018). https://doi.org/10.1016/j.techfore.2018.04.032

    Article  Google Scholar 

  42. Fahimnia, B., Sarkis, J., Davarzani, H.: Green supply chain management: a review and bibliometric analysis. Int. J. Prod. Econ. 162, 101–114 (2015). https://doi.org/10.1016/j.ijpe.2015.01.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Del Vecchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Del Vecchio, V., Lazoi, M., Lezzi, M. (2023). Digital Twin and Extended Reality in Industrial Contexts: A Bibliometric Review. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2023. Lecture Notes in Computer Science, vol 14218. Springer, Cham. https://doi.org/10.1007/978-3-031-43401-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43401-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43400-6

  • Online ISBN: 978-3-031-43401-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics