Skip to main content

Neurophysiological Biomarkers

  • Chapter
  • First Online:
Biomarkers in Neuropsychiatry

Abstract

The use of biomarkers to drive the diagnosis and prognosis of neuropsychiatric disorders and predict the effects of treatment response is a central focus of twenty-first-century medical research. The absence of effective neurophysiological biomarkers in routine clinical practice is attributed to the inadequacy of technologies that can accurately diagnose neuropsychiatric disorders by providing objective and quantitative biological evidence, rather than relying solely on verbal descriptions of symptoms. Integration of recent advances in neurophysiology and neuroscience research has opened up new possibilities for the development of biomarker-assisted techniques through innovative analytical strategies. This chapter presents an introductory overview of the innovative methodological strategies utilized for the identification of neurophysiological biomarkers. These strategies encompass a diverse range of techniques, including neuroimaging methods such as functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) and neurophysiological methods such as electroencephalogram (EEG), as well as approaches based on local activation, network science, and control theory. Clinical applications of innovative technologies in the field of neuropsychiatric disorders, including Alzheimer’s disease, depression, and stroke, will also be discussed. We explore the ways in which preclinical and clinical research are driving the development of biomarker-assisted techniques and emphasize the importance of both forward and reverse translation approaches. We also highlight the need to improve the design of clinical trials, informed by the patient’s neurophysiological phenotype, to revitalize clinical trials in neuropsychiatry and better leverage neurophysiological biomarkers. Transitioning from the descriptive stages to the neurophysiological biomarker-aided stage, which can be evaluated in real-life cohorts, is crucial to developing novel interventions and personalized medicines for preventing the onset of neuropsychiatric disorders and effectively treating these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh I, Rose N. Biomarkers in psychiatry. Nature. 2009;460(7252):202–7.

    Article  CAS  PubMed  Google Scholar 

  2. Raz A, Perouansky M. Central nervous system physiology: neurophysiology. In: Pharmacology and physiology for anesthesia; 2019. p. 145–73.

    Chapter  Google Scholar 

  3. Javitt DC, Spencer KM, Thaker GK, Winterer G, Hajós M. Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov. 2008;7(1):68–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McMackin R, Bede P, Pender N, Hardiman O, Nasseroleslami B. Neurophysiological markers of network dysfunction in neurodegenerative diseases. NeuroImage. 2019;22:101706.

    Article  PubMed  Google Scholar 

  5. Jackson AF, Bolger DJ. The neurophysiological bases of EEG and EEG measurement: a review for the rest of us. Psychophysiology. 2014;51(11):1061–71.

    Article  PubMed  Google Scholar 

  6. Teplan M. Fundamentals of EEG measurement. Measure Sci Rev. 2002;2(2):1–11.

    Google Scholar 

  7. O’Gorman RL, et al. Coupling between resting cerebral perfusion and EEG. Brain Topogr. 2013;26:442–57.

    Article  PubMed  Google Scholar 

  8. Pouliot P, et al. Nonlinear hemodynamic responses in human epilepsy: a multimodal analysis with fNIRS-EEG and fMRI-EEG. J Neurosci Methods. 2012;204(2):326–40.

    Article  PubMed  Google Scholar 

  9. Mulert C, Lemieux L. EEG-fMRI: physiological basis, technique, and applications. Springer Nature; 2023.

    Google Scholar 

  10. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–7.

    Article  CAS  PubMed  Google Scholar 

  11. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–78.

    Article  CAS  PubMed  Google Scholar 

  12. Raichle ME. The brain’s dark energy. Science. 2006;314(5803):1249–50.

    CAS  PubMed  Google Scholar 

  13. Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F. Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci. 2002;99(16):10765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage. 2012;63(2):921–35.

    Article  PubMed  Google Scholar 

  15. Li R, Zhao C, Wang C, Wang J, Zhang Y. Enhancing fNIRS analysis using EEG rhythmic signatures: an EEG-informed fNIRS analysis study. IEEE Trans Biomed Eng. 2020;67(10):2789–97.

    Article  Google Scholar 

  16. Li R, Potter T, Huang W, Zhang Y. Enhancing performance of a hybrid EEG-fNIRS system using channel selection and early temporal features. Front Hum Neurosci. 2017;11:462.

    Article  PubMed Central  Google Scholar 

  17. Fang F, Houston M, Walker S, Nguyen T, Potter T, Zhang Y. Underlying modulators of frontal global field potentials in emotion regulation: an EEG-informed fMRI study. In: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE; 2019. p. 949–52.

    Chapter  Google Scholar 

  18. Yeung MK, Chu VW. Viewing neurovascular coupling through the lens of combined EEG–fNIRS: A systematic review of current methods. Psychophysiology. 2022;59(6):e14054.

    Article  PubMed  Google Scholar 

  19. Li R, Yang D, Fang F, Hong K-S, Reiss AL, Zhang Y. Concurrent fNIRS and EEG for brain function investigation: a systematic, methodology-focused review. Sensors. 2022;22(15):5865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao Y, Liu H, Fang F, Zhang Y. Classification of working memory loads via assessing broken detailed balance of EEG-fNIRS neurovascular coupling measures. IEEE Trans Biomed Eng. 2022;

    Google Scholar 

  21. Pinti P, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann N Y Acad Sci. 2020;1464(1):5–29.

    Article  PubMed  Google Scholar 

  22. Li R, Hosseini H, Saggar M, Balters SC, Reiss AL. Current opinions on the present and future use of functional near-infrared spectroscopy in psychiatry. Neurophotonics. 2023;10(1):013505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dienel GA. Fueling and imaging brain activation. ASN neuro. 2012;4(5):AN20120021.

    Article  Google Scholar 

  24. Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008;21(4):424–30.

    Article  PubMed  Google Scholar 

  25. Azevedo FA, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532–41.

    Article  PubMed  Google Scholar 

  26. Johnson MH, Jones EJ, Gliga T. Brain adaptation and alternative developmental trajectories. Dev Psychopathol. 2015;27(2):425–42.

    Article  PubMed  Google Scholar 

  27. Bassett DS, Sporns O. Network neuroscience. Nat Neurosci. 2017;20(3):353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Villringer A. Understanding functional neuroimaging methods based on neurovascular coupling. In: Optical imaging of brain function and metabolism 2: physiological basis and comparison to other functional neuroimaging methods; 1997. p. 177–93.

    Chapter  Google Scholar 

  29. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hansen P, Kringelbach M, Salmelin R. MEG: An introduction to methods. Oxford University Press; 2010.

    Book  Google Scholar 

  31. da Silva FL. EEG and MEG: relevance to neuroscience. Neuron. 2013;80(5):1112–28.

    Article  Google Scholar 

  32. Bailey DL, Maisey MN, Townsend DW, Valk PE. Positron emission tomography. Springer; 2005.

    Book  Google Scholar 

  33. Betzel RF, Byrge L, He Y, Goñi J, Zuo X-N, Sporns O. Changes in structural and functional connectivity among resting-state networks across the human lifespan. NeuroImage. 2014;102:345–57.

    Article  PubMed  Google Scholar 

  34. Damoiseaux JS, Greicius MD. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct. 2009;213:525–33.

    Article  PubMed  Google Scholar 

  35. Honey CJ, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci. 2009;106(6):2035–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13–36.

    Article  PubMed  Google Scholar 

  37. Murphy AC, Bassett DS. A network neuroscience of neurofeedback for clinical translation. Current Opin Biomed Eng. 2017;1:63–70.

    Article  Google Scholar 

  38. Li R, et al. Aberrant brain network and eye gaze patterns during natural social interaction predict multi-domain social-cognitive behaviors in girls with fragile X syndrome. Mol Psychiatry. 2022:1–9.

    Google Scholar 

  39. Deco G, Kringelbach ML. Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron. 2014;84(5):892–905.

    Article  CAS  PubMed  Google Scholar 

  40. Li R, Mayseless N, Balters S, Reiss AL. Dynamic inter-brain synchrony in real-life inter-personal cooperation: a functional near-infrared spectroscopy hyperscanning study. NeuroImage. 2021;238:118263.

    Article  PubMed  Google Scholar 

  41. Gu S, et al. Controllability of structural brain networks. Nat commun. 2015;6(1):8414.

    Article  CAS  PubMed  Google Scholar 

  42. Fang F, Godlewska B, Cho RY, Savitz SI, Selvaraj S, Zhang Y. Personalizing repetitive transcranial magnetic stimulation for precision depression treatment based on functional brain network controllability and optimal control analysis. NeuroImage. 2022;260:119465.

    Article  PubMed  Google Scholar 

  43. Fang F, Godlewska B, Selvaraj S, Zhang Y. Predicting antidepressant treatment response using functional brain controllability analysis. Brain Connect. 2022;13:107–16.

    Article  Google Scholar 

  44. Fang F, Godlewska B, Cho RY, Savitz SI, Selvaraj S, Zhang Y. Effects of escitalopram therapy on functional brain controllability in major depressive disorder. J Affect Disord. 2022;310:68–74.

    Article  CAS  PubMed  Google Scholar 

  45. Beck AT, Alford BA. Depression: causes and treatment. University of Pennsylvania Press; 2009.

    Book  Google Scholar 

  46. Drysdale AT, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23(1):28–38.

    Article  CAS  PubMed  Google Scholar 

  47. Fava M, Uebelacker LA, Alpert JE, Nierenberg AA, Pava JA, Rosenbaum JF. Major depressive subtypes and treatment response. Biol Psychiatry. 1997;42(7):568–76.

    Article  CAS  PubMed  Google Scholar 

  48. Merikangas KR, Wicki W, Angst J. Heterogeneity of depression: classification of depressive subtypes by longitudinal course. Br J Psychiatry. 1994;164(3):342–8.

    Article  CAS  PubMed  Google Scholar 

  49. Fingelkurts AA, Fingelkurts AA, Rytsälä H, Suominen K, Isometsä E, Kähkönen S. Composition of brain oscillations in ongoing EEG during major depression disorder. Neurosci Res. 2006;56(2):133–44.

    Article  PubMed  Google Scholar 

  50. Grin-Yatsenko VA, Baas I, Ponomarev VA, Kropotov JD. Independent component approach to the analysis of EEG recordings at early stages of depressive disorders. Clin Neurophysiol. 2010;121(3):281–9.

    Article  PubMed  Google Scholar 

  51. Lee J, et al. Differential resting-state EEG patterns associated with comorbid depression in internet addiction. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;50:21–6.

    Article  Google Scholar 

  52. Lee PF, Kan DPX, Croarkin P, Phang CK, Doruk D. Neurophysiological correlates of depressive symptoms in young adults: a quantitative EEG study. J Clin Neurosci. 2018;47:315–22.

    Article  PubMed  Google Scholar 

  53. Allen JJ, Reznik SJ. Frontal EEG asymmetry as a promising marker of depression vulnerability: summary and methodological considerations. Curr Opin Psychol. 2015;4:93–7.

    Article  PubMed Central  Google Scholar 

  54. Gotlib IH. EEG alpha asymmetry, depression, and cognitive functioning. Cognit Emot. 1998;12(3):449–78.

    Article  Google Scholar 

  55. Li BJ, Friston K, Mody M, Wang HN, Lu HB, Hu DW. A brain network model for depression: from symptom understanding to disease intervention. CNS Neurosci Ther. 2018;24(11):1004–19.

    Article  PubMed  Google Scholar 

  56. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33(1):88–109.

    Article  CAS  PubMed  Google Scholar 

  57. Fang F, Gao Y, Schulz PE, Selvaraj S, Zhang Y. Brain controllability distinctiveness between depression and cognitive impairment. J Affect Disord. 2021;294:847–56.

    Article  PubMed  Google Scholar 

  58. Ho CS, et al. Diagnostic and predictive applications of functional near-infrared spectroscopy for major depressive disorder: a systematic review. Front Psych. 2020;11:378.

    Article  Google Scholar 

  59. Pu S, et al. Suicidal ideation is associated with reduced prefrontal activation during a verbal fluency task in patients with major depressive disorder. J Affect Disord. 2015;181:9–17.

    Article  PubMed  Google Scholar 

  60. Jiang WH, Yuan YG, Zhou H, Bai F, You JY, Zhang ZJ. Abnormally altered patterns of whole brain functional connectivity network of posterior cingulate cortex in remitted geriatric depression: a longitudinal study. CNS Neurosci Ther. 2014;20(8):772–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Matsubara T, et al. Different fronto-temporal activation during an emotional word task in patients with unipolar and bipolar depression: a functional near-infrared spectroscopy study. Biol Psychiatry. 2015;77(9): Elsevier Science Inc., 355S–355S.

    Google Scholar 

  62. Yu C, et al. White matter tract integrity and intelligence in patients with mental retardation and healthy adults. NeuroImage. 2008;40(4):1533–41.

    Article  PubMed  Google Scholar 

  63. Li H, et al. Disruption of the structural and functional connectivity of the frontoparietal network underlies symptomatic anxiety in late-life depression. NeuroImage. 2020;28:102398.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Melnikova I. Therapies for Alzheimer’s disease. Nat Rev Drug Discov. 2007;6(5):341–2.

    Article  CAS  PubMed  Google Scholar 

  65. Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM. Antibodies to watch in 2023. Mabs. Taylor & Francis. 2023;15(1):2153410.

    Google Scholar 

  66. Tok S, Ahnaou A, Drinkenburg W. Functional neurophysiological biomarkers of early-stage Alzheimer’s disease: a perspective of network hyperexcitability in disease progression. J Alzheimers Dis. 2022;88(3):809–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brunovsky M, Matousek M, Edman A, Cervena K, Krajca V. Objective assessment of the degree of dementia by means of EEG. Neuropsychobiology. 2003;48(1):19–26.

    Article  PubMed  Google Scholar 

  68. Lizio R, Vecchio F, Frisoni GB, Ferri R, Rodriguez G, Babiloni C. Electroencephalographic rhythms in Alzheimer’s disease. Int J Alzheimer’s Dis. 2011;2011

    Google Scholar 

  69. Horvath A, Szucs A, Csukly G, Sakovics A, Stefanics G, Kamondi A. EEG and ERP biomarkers of Alzheimer’s disease: a critical review. Front Biosci (Landmark edition). 2018;23:183–220.

    Article  Google Scholar 

  70. Engels M, Stam CJ, van der Flier WM, Scheltens P, de Waal H, van Straaten EC. Declining functional connectivity and changing hub locations in Alzheimer’s disease: an EEG study. BMC Neurol. 2015;15(1):1–8.

    Article  Google Scholar 

  71. Li R, Nguyen T, Potter T, Zhang Y. Dynamic cortical connectivity alterations associated with Alzheimer’s disease: an EEG and fNIRS integration study. NeuroImage. 2019;21:101622.

    Article  PubMed  Google Scholar 

  72. Kabbara A, Eid H, El Falou W, Khalil M, Wendling F, Hassan M. Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease. J Neural Eng. 2018;15(2):026023.

    Article  CAS  PubMed  Google Scholar 

  73. Hayes SM, Ryan L, Schnyer DM, Nadel L. An fMRI study of episodic memory: retrieval of object, spatial, and temporal information. Behav Neurosci. 2004;118(5):885.

    Article  PubMed Central  Google Scholar 

  74. Rémy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer’s disease: a combined structural and functional MRI study. NeuroImage. 2005;25(1):253–66.

    Article  PubMed  Google Scholar 

  75. Schwindt GC, Black SE. Functional imaging studies of episodic memory in Alzheimer’s disease: a quantitative meta-analysis. NeuroImage. 2009;45(1):181–90.

    Article  PubMed  Google Scholar 

  76. Mevel K, Chételat G, Eustache F, Desgranges B. The default mode network in healthy aging and Alzheimer’s disease. Int J Alzheimer’s Dis. 2011;2011

    Google Scholar 

  77. Jones D, et al. Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology. 2011;77(16):1524–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu X, et al. Altered default mode network connectivity in Alzheimer’s disease—a resting functional MRI and Bayesian network study. Hum Brain Mapp. 2011;32(11):1868–81.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Drzezga A, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain. 2011;134(6):1635–46.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sheline YI, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry. 2010;67(6):584–7.

    Article  CAS  PubMed  Google Scholar 

  81. Sperling RA, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 2009;63(2):178–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fallgatter A, Roesler M, Sitzmann A, Heidrich A, Mueller T, Strik W. Loss of functional hemispheric asymmetry in Alzheimer’s dementia assessed with near-infrared spectroscopy. Cogn Brain Res. 1997;6(1):67–72.

    Article  CAS  Google Scholar 

  83. Li R, Rui G, Chen W, Li S, Schulz PE, Zhang Y. Early detection of Alzheimer’s disease using non-invasive near-infrared spectroscopy. Front Aging Neurosci. 2018;10:366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li X, et al. Decreased resting-state brain signal complexity in patients with mild cognitive impairment and Alzheimer’s disease: a multi-scale entropy analysis. Biomed Opt Express. 2018;9(4):1916–29.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kim J, Jeong M, Stiles WR, Choi HS. Neuroimaging modalities in Alzheimer’s disease: diagnosis and clinical features. Int J Mol Sci. 2022;23(11):6079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li R, Rui G, Zhao C, Wang C, Fang F, Zhang Y. Functional network alterations in patients with amnestic mild cognitive impairment characterized using functional near-infrared spectroscopy. IEEE Trans Neural Syst Rehabil Eng. 2019;28(1):123–32.

    Article  Google Scholar 

  87. Nguyen T, Potter T, Grossman R, Zhang Y. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging. J Neural Eng. 2018;15(3):036017.

    Article  PubMed  Google Scholar 

  88. Nguyen T, Potter T, Karmonik C, Grossman R, Zhang Y. Concurrent EEG and functional MRI recording and integration analysis for dynamic cortical activity imaging. JoVE. 2018;136:e56417.

    Google Scholar 

  89. Nguyen T, Zhou T, Potter T, Zou L, Zhang Y. The cortical network of emotion regulation: insights from advanced EEG-fMRI integration analysis. IEEE Trans Med Imaging. 2019;38(10):2423–33.

    Article  PubMed  Google Scholar 

  90. Fang F, Potter T, Nguyen T, Zhang Y. Dynamic reorganization of the cortical functional brain network in affective processing and cognitive reappraisal. Int J Neural Syst. 2020;30(10):2050051.

    Article  PubMed  Google Scholar 

  91. Stinear CM. Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol. 2017;16(10):826–36.

    Article  PubMed  Google Scholar 

  92. Finnigan S, van Putten MJ. EEG in ischaemic stroke: quantitative EEG can uniquely inform (sub-) acute prognoses and clinical management. Clin Neurophysiol. 2013;124(1):10–9.

    Article  PubMed  Google Scholar 

  93. Nicolo P, Rizk S, Magnin C, Pietro MD, Schnider A, Guggisberg AG. Coherent neural oscillations predict future motor and language improvement after stroke. Brain. 2015;138(10):3048–60.

    Article  PubMed  Google Scholar 

  94. Rehme AK, Volz LJ, Feis DL, Eickhoff SB, Fink GR, Grefkes C. Individual prediction of chronic motor outcome in the acute post-stroke stage: behavioral parameters versus functional imaging. Hum Brain Mapp. 2015;36(11):4553–65.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hannanu FF, et al. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke. NeuroImage. 2017;14:518–29.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Boyd LA, et al. Biomarkers of stroke recovery: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int J Stroke. 2017;12(5):480–93.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Schaechter JD, et al. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair. 2002;16(4):326–38.

    Article  PubMed  Google Scholar 

  98. Feydy A, et al. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke. 2002;33(6):1610–7.

    Article  CAS  PubMed  Google Scholar 

  99. Yang M, Yang Z, Yuan T, Feng W, Wang P. A systemic review of functional near-infrared spectroscopy for stroke: current application and future directions. Front Neurol. 2019:58.

    Google Scholar 

  100. Kato H, Izumiyama M, Koizumi H, Takahashi A, Itoyama Y. Near-infrared spectroscopic topography as a tool to monitor motor reorganization after hemiparetic stroke: a comparison with functional MRI. Stroke. 2002;33(8):2032–6.

    Article  PubMed  Google Scholar 

  101. Miyai I, Yagura H, Hatakenaka M, Oda I, Konishi I, Kubota K. Longitudinal optical imaging study for locomotor recovery after stroke. Stroke. 2003;34(12):2866–70.

    Article  PubMed  Google Scholar 

  102. Li R, Li S, Roh J, Wang C, Zhang Y. Multimodal neuroimaging using concurrent EEG/fNIRS for poststroke recovery assessment: an exploratory study. Neurorehabil Neural Repair. 2020;34(12):1099–110.

    Article  PubMed  Google Scholar 

  103. Li X, Fang F, Li R, Zhang Y. Functional brain controllability alterations in stroke. Front Bioeng Biotechnol. 2022;10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, F., Houston, M., Zhang, Y. (2023). Neurophysiological Biomarkers. In: Teixeira, A.L., Rocha, N.P., Berk, M. (eds) Biomarkers in Neuropsychiatry. Springer, Cham. https://doi.org/10.1007/978-3-031-43356-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43356-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43355-9

  • Online ISBN: 978-3-031-43356-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics