Skip to main content

Role of Machine Learning in Detection and Classification of Leukemia: A Comparative Analysis

  • Chapter
  • First Online:
GANs for Data Augmentation in Healthcare
  • 119 Accesses

Abstract

Blood cancers are of different types out of which leukemia is considered the most common. It is found in different age groups of patients. The underlying reasons of this abnormal illness include excessive blood cell proliferation and immature blood cell growth, which can affect red blood cells, bone marrow, and the immune system. Leukocytes are prominent factor in early detection to identify the diagnosis of leukemia which is early sign of illness. Despite the high prevalence of leukemia, flow cytometry equipment is scarce, and the processes utilized at laboratory diagnosis facilities are time-consuming. In the health sector AI/ML can significantly improve the diagnostic accuracy, reduction of time, and provide cost effective, much safer, and prompt diagnostic possibilities. As AI/ML tools are user friendly, various other experts like clinical, medical laboratories, and specialists can wisely adopt these tools and applications. A thorough and organized overview of the ML-based leukemia detection and classification models is provided in this chapter. The early picture of leukemia can be processed using various ML/AI algorithm applications. The purpose is to improve accuracy, reduce time, and offer trouble-free diagnostic methods. The present systematic review was undertaken to examine the works intending to identify and categorize leukemia by utilizing machine learning algorithms. This study was motivated by the possibilities of machine learning (ML) in disease diagnosis. This review study presents a comprehensive and systematic view of the ML-based leukemia detection and classification models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pal, S. K., Bandyopadhyay, S., & Ray, S. S. (2006). Evolutionary computation in bioinformatics: A review. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 36(5), 601–615.

    Article  Google Scholar 

  2. Patel, H., & Rajput, D. (2011). Data mining applications in present scenario: A review. International Journal of Soft Computing, 6(4), 136–142.

    Article  Google Scholar 

  3. Angermueller, C., Parnamaa, T., Parts, L., & Stegle, O. (2016). Deep learning for computational biology. Molecular Systems Biology, 12(7), 878.

    Article  Google Scholar 

  4. Jones, W., Alasoo, K., Fishman, D., & Parts, L. (2017). Computational biology: Deep learning. Emerging Topics in Life Sciences, 1(3), 257–274.

    Article  Google Scholar 

  5. Bhaskar, H., Hoyle, D. C., & Singh, S. (2006). Machine learning in bioinformatics: A brief survey and recommendations for practitioners. Computers in Biology and Medicine, 36(10), 1104–1125.

    Article  Google Scholar 

  6. Pui, C.-H., Robison, L. L., & Look, A. T. (2008). Acute lymphoblastic leukaemia. The Lancet, 371(9617), 1030–1043.

    Article  Google Scholar 

  7. Salah, H. T., Muhsen, I. N., Salama, M. E., Owaidah, T., & Hashmi, S. K. (2019). Machine learning applications in the diagnosis of leukemia: Current trends and future directions. International Journal of Laboratory Hematology, 41(6), 717–725.

    Article  Google Scholar 

  8. Srisukkham, W., Zhang, L., Neoh, S. C., Todryk, S., & Lim, C. P. (2017). Intelligent leukaemia diagnosis with bare-bones PSO based feature optimization. Applied Soft Computing, 56, 405–419.

    Article  Google Scholar 

  9. Dohner, H., Weisdorf, D. J., & Bloomfield, C. D. (2015). Acute myeloid leukemia. New England Journal of Medicine, 373(12), 1136–1152.

    Article  Google Scholar 

  10. O’Donnell, M. R., Abboud, C. N., Altman, J., Appelbaum, F. R., Arber, D. A., Attar, E., Borate, U., Coutre, S. E., Damon, L. E., Goorha, S., et al. (2012). Acute myeloid leukemia. Journal of the National Comprehensive Cancer Network, 10(8), 984–1021.

    Article  Google Scholar 

  11. Patel, N., & Mishra, A. (2015). Automated leukaemia detection using microscopic images. Procedia Computer Science, 58, 635–642.

    Article  Google Scholar 

  12. Shafique, S., & Tehsin, S. (2018). Computer-aided diagnosis of acute lymphoblastic leukaemia. Computational and Mathematical Methods in Medicine, 2018.

    Google Scholar 

  13. TTP, T., Pham, G. N., Park, J. -H., Moon, K. -S., Lee, S. -H., Kwon, K. R., et al. (2017). Acute leukemia classification using convolution neural network in clinical decision support system. In CS & IT conference proceedings (vol. 7).

    Google Scholar 

  14. Thakur, T., Batra, I., Luthra, M., Vimal, S., Dhiman, G., Malik, A., & Shabaz, M. (2021). Gene expression-assisted cancer prediction techniques. Journal of Healthcare Engineering, 2021.

    Google Scholar 

  15. Waseem, M. H., Nadeem, M. S. A., Abbas, A., Shaheen, A., Aziz, W., Anjum, A., Manzoor, U., Balubaid, M. A., & Shim, S.-O. (2019). On the feature selection methods and reject option classifiers for robust cancer prediction. IEEE Access, 7, 141072–141082.

    Article  Google Scholar 

  16. Faivdullah, L., Azahar, F., Htike, Z. Z., & Naing, W. (2015). Leukemia detection from blood smears. Journal of Medical and Bioengineering, 4(6).

    Google Scholar 

  17. Rawat, J., Singh, A., Bhadauria, H., & Virmani, J. (2015). Computer aided diagnostic system for detection of leukemia using microscopic images. Procedia Computer Science, 70, 748–756.

    Article  Google Scholar 

  18. Negm, A. S., Hassan, O. A., & Kandil, A. H. (2018). A decision support system for acute leukaemia classification based on digital microscopic images. Alexandria Engineering Journal, 57(4), 2319–2332.

    Article  Google Scholar 

  19. Abdeldaim, A. M., Sahlol, A. T., Elhoseny, M., & Hassanien, A. E. (2018). Computeraided acute lymphoblastic leukemia diagnosis system based on image analysis. In Advances in soft computing and machine learning in image processing (pp. 131–147). Springer.

    Chapter  Google Scholar 

  20. Prinyakupt, J., & Pluempitiwiriyawej, C. (2015). Segmentation of white blood cells and comparison of cell morphology by linear and na¨ıve Bayes classifiers. Biomedical Engineering Online, 14(1), 1–19.

    Article  Google Scholar 

  21. Netto, O. P., Nozawa, S. R., Mitrowsky, R. A. R., Macedo, A. A., Baranauskas, J. A., & Lins, C. (2010). Applying decision trees to gene expression data from DNA microarrays: A leukemia case study. In XXX congress of the Brazilian computer society, X workshop on medical informatics (p. 10). Belo Horizonte MG.

    Google Scholar 

  22. Rehman, A., Abbas, N., Saba, T., Rahman, S. I. U., Mehmood, Z., & Kolivand, H. (2018). Classification of acute lymphoblastic leukemia using deep learning. Microscopy Research and Technique, 81(11), 1310–1317.

    Article  Google Scholar 

  23. Cernea, A., Fernández-Martínez, J. L., de Andrés-Galiana, E. J., Galván Hernández, J. A., García Pravia, C., & Zhang, J. (2018). Analysis of clinical prognostic variables for triple negative breast cancer histological grading and lymph node metastasis. Journal of Medical Informatics and Decision Making, 1(1), 14–36.

    Article  Google Scholar 

  24. Candia, J., Cherukuri, S., Guo, Y., Doshi, K. A., Banavar, J. R., Civin, C. I., & Losert, W. (2015). Uncovering low-dimensional, mir-based signatures of acute myeloid and lymphoblastic leukemias with a machine-learning driven network approach. Convergent Science Physical Oncology, 1(2), 025002.

    Article  Google Scholar 

  25. Ni, W., Tong, X., Qian, W., Jin, J., & Zhao, H. (2013). Discrimination of malignant neutrophils of chronic myelogenous leukemia from normal neutrophils by support vector machine. Computers in Biology and Medicine, 43(9), 1192–1195.

    Article  Google Scholar 

  26. Paswan, S., & Rathore, Y. K. (2017). Detection and classification of blood cancer from microscopic cell images using SVM KNN and NN classifier. International Journal of Advance Research, Ideas and Innovations in Technology, 3, 315–324.

    Google Scholar 

  27. Amin, M. M., Kermani, S., Talebi, A., & Oghli, M. G. (2015). Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier. Journal of Medical Signals and Sensors, 5(1), 49.

    Article  Google Scholar 

  28. Kumar, S., Mishra, S., Asthana, P., et al. (2018). Automated detection of acute leukemia using k-mean clustering algorithm. In Advances in computer and computational sciences (pp. 655–670). Springer.

    Chapter  Google Scholar 

  29. Daqqa, K. A. A., Maghari, A. Y., & Al Sarraj, W. F. (2017). Prediction and diagnosis of leukemia using classification algorithms. In 2017 8th International Conference on Information Technology (ICIT) (pp. 638–643). IEEE.

    Google Scholar 

  30. Rodellar, J., Alferez, S., Acevedo, A., Molina, A., & Merino, A. (2018). Image processing and machine learning in the morphological analysis of blood cells. International Journal of Laboratory Hematology, 40, 46–53.

    Article  Google Scholar 

  31. Joshi, M. D., Karode, A. H., & Suralkar, S. (2013). White blood cells segmentation and classification to detect acute leukemia. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 2(3), 147–151.

    Google Scholar 

  32. Kazemi, F., Najafabadi, T. A., & Araabi, B. N. (2016). Automatic recognition of acute myelogenous leukemia in blood microscopic images using k-means clustering and support vector machine. Journal of Medical Signals and Sensors, 6(3), 183.

    Article  Google Scholar 

  33. Osowski, S., Siroic, R., Markiewicz, T., & Siwek, K. (2008). Application of support vector machine and genetic algorithm for improved blood cell recognition. IEEE Transactions on Instrumentation and Measurement, 58(7), 2159–2168.

    Article  Google Scholar 

  34. Nasir, A. A., Mashor, M. Y., & Hassan, R. (2013). Classification of acute leukaemia cells using multilayer perceptron and simplified fuzzy artmap neural networks. The International Arab Journal of Information Technology, 10(4), 1–9.

    Google Scholar 

  35. Chatap, N., & Shibu, S. (2014). Analysis of blood samples for counting leukemia cells using support vector machine and nearest neighbour. IOSR Journal of Computer Engineering (IOSR-JCE), 16(5), 79–87.

    Article  Google Scholar 

  36. Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10), 906–914.

    Article  Google Scholar 

  37. Lee, S.-I., Celik, S., Logsdon, B. A., Lundberg, S. M., Martins, T. J., Oehler, V. G., Estey, E. H., Miller, C. P., Chien, S., Dai, J., et al. (2018). A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nature Communications, 9(1), 1–13.

    Google Scholar 

  38. Sen, N. B., & Mathew, M. (2016). Automated AML detection from complete blood smear image using KNN classifier. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 5(7).

    Google Scholar 

  39. Haider, R. Z., Ujjan, I. U., & Shamsi, T. S. (2020). Cell population data–driven acute promyelocytic leukemia flagging through artificial neural network predictive modeling. Translational Oncology, 13(1), 11–16.

    Article  Google Scholar 

  40. Gupta, N., Singh, H., & Singla, J. (2022). Fuzzy logic-based systems for medical diagnosis – A review. In 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 1058–1062). IEEE.

    Google Scholar 

  41. Ahmed, N., Yigit, A., Isik, Z., & Alpkocak, A. (2019). Identification of leukemia subtypes from microscopic images using convolutional neural network. Diagnostics, 9(3), 104.

    Article  Google Scholar 

  42. Shafique, S., & Tehsin, S. (2018). Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technology in Cancer Research & Treatment, 17, 1533033818802789.

    Article  Google Scholar 

  43. Thanh, T., Vununu, C., Atoev, S., Lee, S.-H., & Kwon, K.-R. (2018). Leukemia blood cell image classification using convolutional neural network. International Journal of Computer Theory and Engineering, 10(2), 54–58.

    Article  Google Scholar 

  44. Adjouadi, M., Ayala, M., Cabrerizo, M., Zong, N., Lizarraga, G., & Rossman, M. (2010). Classification of leukemia blood samples using neural networks. Annals of Biomedical Engineering, 38(4), 1473–1482.

    Article  Google Scholar 

  45. Kassani, S. H., Kassani, P. H., Wesolowski, M. J., Schneider, K. A., & Deters, R. (2019). A hybrid deep learning architecture for leukemic b-lymphoblast classification. In 2019 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 271–276). IEEE.

    Google Scholar 

  46. Kanth, B. K. (n.d.). A fuzzy-neural approach for leukemia cancer classification.

    Google Scholar 

  47. Kansara, D., Sompura, S., Momin, S., & D’Silva, M. (2018). Classification of WBC for blood cancer diagnosis using deep convolutional neural networks. International Journal of Research in Advent Technology, 6(12), 3576–3581.

    Google Scholar 

  48. Sharma, G., & Kumar, R. (2019). Classifying white blood cells in blood smear images using a convolutional neural network. International Journal of Innovative Technology and Exploring Engineering, 8(9S), 103–108.

    Google Scholar 

  49. Gayathri, S., & Jyothi, R. (2018). An automated leucocyte classification for leukemia detection. International Research Journal of Engineering and Technology, 5(5), 4254–4264.

    Google Scholar 

  50. Afshar, S., Abdolrahmani, F., Vakili, T. F., Zohdi, S. M., & Taheri, K. (2011). Recognition and prediction of leukemia with artificial neural network (ANN).

    Google Scholar 

  51. Theera-Umpon, N. (2005). Patch-based white blood cell nucleus segmentation using fuzzy clustering. ECTI-EEC, 3(1), 15–19.

    Google Scholar 

  52. Dorini, L. B., Minetto, R., & Leite, N. J. (2007). White blood cell segmentation using morphological operators and scale-space analysis. In XX Brazilian symposium on computer graphics and image processing (SIBGRAPI 2007) (pp. 294–304). IEEE.

    Google Scholar 

  53. Pan, L., Liu, G., Lin, F., Zhong, S., Xia, H., Sun, X., & Liang, H. (2017). Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia. Scientific Reports, 7(1), 1–9.

    Google Scholar 

  54. Laosai, J., & Chamnongthai, K. (2018). Classification of acute leukemia using medical-knowledge-based morphology and cd marker. Biomedical Signal Processing and Control, 44, 127–137.

    Article  Google Scholar 

  55. Gonzalez, J. A., Olmos, I., Altamirano, L., Morales, B. A., Reta, C., Galindo, M. C., Alonso, J. E., & Lobato, R. (2011). Leukemia identification from bone marrow cells images using a machine vision and data mining strategy. Intelligent Data Analysis, 15(3), 443–462.

    Article  Google Scholar 

  56. Pansombut, T., Wikaisuksakul, S., Khongkraphan, K., & Phon-On, A. (2019). Convolutional neural networks for recognition of lymphoblast cell images. Computational Intelligence and Neuroscience, 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshita Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garg, R., Garg, H., Patel, H., Ananthakrishnan, G., Sharma, S. (2023). Role of Machine Learning in Detection and Classification of Leukemia: A Comparative Analysis. In: Solanki, A., Naved, M. (eds) GANs for Data Augmentation in Healthcare. Springer, Cham. https://doi.org/10.1007/978-3-031-43205-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43205-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43204-0

  • Online ISBN: 978-3-031-43205-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics