Skip to main content

An Overview of Hemostasis

  • Chapter
  • First Online:
Congenital Bleeding Disorders

Abstract

Hemostasis is a physiological well-controlled complex process in the body in which the integrity of the circulatory system is maintained after vascular injury. This process consists of three main components: the vascular system, cellular components, and non-cellular components. These work together closely to keep the circulatory system in the best condition.

Hemostasis is divided into primary and secondary parts. In primary hemostasis, vascular endothelial cells and platelets initially form an unstable hemostatic platelet plug. Secondary hemostasis activates the coagulation cascade, resulting in formation of a stable fibrin clot. Overall, the goal of hemostasis is to stop bleeding from a site of injury. However, natural anticoagulants are necessary for limiting clot formation at the site, and the formed clot must be removed after healing to restore unimpeded blood flow. To achieve this, fibrinolysis is one of the most important processes, anticoagulants interacting in a complicated dance with pro-coagulants to limit vascular injury to the injured site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osaki T, Ichinose A. Current views of activating and regulatory mechanisms of blood coagulation. Nihon Rinsho Japanese J Clin Med. 2014;72(7):1206–11.

    Google Scholar 

  2. Davie EW. A brief historical review of the waterfall/cascade of blood coagulation. J Biol Chem. 2003;278(51):50819–32.

    Article  CAS  PubMed  Google Scholar 

  3. Butenas S, Mann K. Blood coagulation. Biochem Mosc. 2002;67(1):3–12.

    Article  CAS  Google Scholar 

  4. Kasirer-Friede A, Shattil SJ. Regulation of platelet adhesion receptors. Platelets in thrombotic and non-thrombotic disorders. Springer; 2017. p. 69–84.

    Book  Google Scholar 

  5. Feghhi S, Munday AD, Tooley WW, Rajsekar S, Fura AM, Kulman JD, et al. Glycoprotein Ib-IX-V complex transmits cytoskeletal forces that enhance platelet adhesion. Biophys J. 2016;111(3):601–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bennett JS. Regulation of integrins in platelets. Pept Sci. 2015;104(4):323–33.

    Article  CAS  Google Scholar 

  7. Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327–58.

    Article  CAS  PubMed  Google Scholar 

  8. Gremmel T, Frelinger AL III, Michelson AD. Platelet physiology. In: Seminars in thrombosis and hemostasis. Thieme Medical Publishers; 2016.

    Google Scholar 

  9. Sorrentino S, Studt J-D, Medalia O, Sapra KT. Roll, adhere, spread and contract: structural mechanics of platelet function. Eur J Cell Biol. 2015;94(3–4):129–38.

    Article  CAS  PubMed  Google Scholar 

  10. Goto S, Hasebe T, Takagi S. Platelets: small in size but essential in the regulation of vascular homeostasis–translation from basic science to clinical medicine. Circ J. 2015;79(9):1871–81.

    Article  CAS  PubMed  Google Scholar 

  11. Pryzdial EL, Lee FM, Lin BH, Carter RL, Tegegn TZ, Belletrutti MJ. Blood coagulation dissected. Transfus Apher Sci. 2018;57(4):449–57.

    Article  PubMed  Google Scholar 

  12. Dhar H, Santosh A. Glanzmann’s thrombasthenia: a review of literature. J South Asian Feder Obs Gynaecol. 2019;11(2):134–7.

    Article  Google Scholar 

  13. Mohan G, Malayala SV, Mehta P, Balla M. A comprehensive review of congenital platelet disorders, thrombocytopenias and thrombocytopathies. Cureus. 2020;12(10):e11275.

    PubMed  PubMed Central  Google Scholar 

  14. Coller B. α II bβ3: structure and function. J Thromb Haemost. 2015;13:S17–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bledzka K, Qin J, Plow EF. Integrin αIIbβ3. Platelets. 2019:227–41.

    Google Scholar 

  16. Quach ME, Li R. Structure-function of platelet glycoprotein Ib-IX. J Thromb Haemost. 2020;18(12):3131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. López JA. The platelet glycoprotein Ib-IX-V complex. Platelets in thrombotic and non-thrombotic disorders. Springer; 2017. p. 85–97.

    Book  Google Scholar 

  18. Li R, Emsley J. The organizing principle of the platelet glycoprotein Ib–IX–V complex. J Thromb Haemost. 2013;11(4):605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Almomani MH, Mangla A. Bernard Soulier syndrome. 2020.

    Google Scholar 

  20. Madamanchi A, Santoro SA, Zutter MM. α2β1 Integrin. I Domain Integrins. 2014;819:41–60.

    Google Scholar 

  21. Chastney MR, Conway JR, Ivaska J. Integrin adhesion complexes. Curr Biol. 2021;31(10):R536–R42.

    Article  CAS  PubMed  Google Scholar 

  22. Perrella G, Nagy M, Watson SP, Heemskerk JW. Platelet GPVI (Glycoprotein VI) and thrombotic complications in the venous system. Arterioscler Thromb Vasc Biol. 2021;41(11):2681–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clark JC, Damaskinaki F-N, Cheung YFH, Slater A, Watson SP. Structure-function relationship of the platelet glycoprotein VI (GPVI) receptor: does it matter if it is a dimer or monomer? Platelets. 2021;32(6):724–32.

    Article  CAS  PubMed  Google Scholar 

  24. Arman M, Krauel K. Human platelet IgG Fc receptor Fcγ RIIA in immunity and thrombosis. J Thromb Haemost. 2015;13(6):893–908.

    Article  CAS  PubMed  Google Scholar 

  25. Gawaz M, Vogel S, Pfannenberg C, Pichler B, Langer H, Bigalke B. Implications of glycoprotein VI for theranostics. Thromb Haemost. 2014;112(07):26–31.

    Article  CAS  PubMed  Google Scholar 

  26. Kunicki TJ. Platelet membrane glycoproteins and their function: an overview. Blut. 1989;59(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  27. Nurden AT, editor. Platelet membrane glycoproteins: a historical review. Seminars in thrombosis and hemostasis. Thieme Medical Publishers; 2014.

    Google Scholar 

  28. George JN. Platelet membrane glycoproteins. Springer Science & Business Media; 2013.

    Google Scholar 

  29. Flaumenhaft R, Sharda A. Platelet secretion. In: Platelets. Elsevier; 2019. p. 349–70.

    Chapter  Google Scholar 

  30. Koseoglu S, Flaumenhaft R. Advances in platelet granule biology. Curr Opin Hematol. 2013;20(5):464–71.

    Article  PubMed  Google Scholar 

  31. Heijnen H, Van Der Sluijs P. Platelet secretory behaviour: as diverse as the granules… or not? J Thromb Haemost. 2015;13(12):2141–51.

    Article  CAS  PubMed  Google Scholar 

  32. Lang T, Johanning K, Metzler H, Piepenbrock S, Solomon C, Rahe-Meyer N, et al. The effects of fibrinogen levels on thromboelastometric variables in the presence of thrombocytopenia. Anesth Analg. 2009;108(3):751–8.

    Article  PubMed  Google Scholar 

  33. Sadeghian MH, Keramati MR, Badiei Z, Ravarian M, Ayatollahi H, Rafatpanah H, et al. Alloimmunization among transfusion-dependent thalassemia patients. Asian J Transfus Sci. 2009;3(2):95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yadav S, Storrie B. The cellular basis of platelet secretion: emerging structure/function relationships. Platelets. 2017;28(2):108–18.

    Article  CAS  PubMed  Google Scholar 

  35. Golebiewska EM, Poole AW. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Millington-Burgess SL, Harper MT. Gene of the issue: ANO6 and Scott syndrome. Platelets. 2020;31(7):964–7.

    Article  CAS  PubMed  Google Scholar 

  37. Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord. 2015;15(1):1–11.

    Article  Google Scholar 

  38. van Hinsbergh VW. Endothelium—role in regulation of coagulation and inflammation. In: Seminars in immunopathology. Springer; 2012.

    Google Scholar 

  39. Monahan-Earley R, Dvorak AM, Aird WC. Evolutionary origins of the blood vascular system and endothelium. J Thromb Haemost. 2013;11:46–66.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Neubauer K, Zieger B. Endothelial cells and coagulation. Cell Tissue Res. 2022;387(3):1–8.

    Article  Google Scholar 

  41. Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, et al. Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol. 2005;167(2):609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007;100(2):174–90.

    Article  CAS  PubMed  Google Scholar 

  43. Bode M, Mackman N. Protective and pathological roles of tissue factor in the heart. Hamostaseologie. 2015;35(01):37–46.

    Article  CAS  PubMed  Google Scholar 

  44. Borissoff JI, Spronk HM, ten Cate H. The hemostatic system as a modulator of atherosclerosis. N Engl J Med. 2011;364(18):1746–60.

    Article  CAS  PubMed  Google Scholar 

  45. Fetalvero KM, Martin KA, Hwa J. Cardioprotective prostacyclin signaling in vascular smooth muscle. Prostaglandins Other Lipid Mediat. 2007;82(1–4):109–18.

    Article  CAS  PubMed  Google Scholar 

  46. Schousboe I. Binding of activated Factor XII to endothelial cells affects its inactivation by the C1-esterase inhibitor. Eur J Biochem. 2003;270(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  47. Do H, Healey JF, Waller EK, Lollar P. Expression of factor VIII by murine liver sinusoidal endothelial cells. J Biol Chem. 1999;274(28):19587–92.

    Article  CAS  PubMed  Google Scholar 

  48. Dubois C, Panicot-Dubois L, Gainor JF, Furie BC, Furie B. Thrombin-initiated platelet activation in vivo is vWF independent during thrombus formation in a laser injury model. J Clin Invest. 2007;117(4):953–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Esmon CT, Esmon NL. The link between vascular features and thrombosis. Annu Rev Physiol. 2011;73:503–14.

    Article  CAS  PubMed  Google Scholar 

  50. Wood JP, Ellery PE, Maroney SA, Mast AE. Biology of tissue factor pathway inhibitor. Blood. 2014;123(19):2934–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dahm A, van Hylckama VA, Bendz B, Rosendaal F, Bertina RM, Sandset PM. Low levels of tissue factor pathway inhibitor (TFPI) increase the risk of venous thrombosis. Blood. 2003;101(11):4387–92.

    Article  CAS  PubMed  Google Scholar 

  52. Collen D, Lijnen HR. The tissue-type plasminogen activator story. Arterioscler Thromb Vasc Biol. 2009;29(8):1151–5.

    Article  CAS  PubMed  Google Scholar 

  53. Chung DW, Fujikawa K. Processing of von Willebrand factor by ADAMTS-13. Biochemistry. 2002;41(37):11065–70.

    Article  CAS  PubMed  Google Scholar 

  54. Aird WC. Endothelium and hemostasis. Endothelial Cells Health Dis. 2005:450–63.

    Google Scholar 

  55. Petraglia AL, Marky AH, Walker C, Thiyagarajan M, Zlokovic BV. Activated protein C is neuroprotective and mediates new blood vessel formation and neurogenesis after controlled cortical impact. Neurosurgery. 2010;66(1):165–72.

    Article  PubMed  Google Scholar 

  56. Adams RL, Bird RJ. coagulation cascade and therapeutics update: relevance to nephrology. Part 1: Overview of coagulation, thrombophilias and history of anticoagulants. Nephrology. 2009;14(5):462–70.

    Article  CAS  PubMed  Google Scholar 

  57. Ramanan SV, Rajan J, Rajan S. The coagulation cascade. transfusion practice in clinical. Neurosciences. 2022:257.

    Google Scholar 

  58. O'Donnell JS, O'Sullivan JM, Preston RJ. Advances in understanding the molecular mechanisms that maintain normal haemostasis. Br J Haematol. 2019;186(1):24–36.

    Article  PubMed  Google Scholar 

  59. Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen L, et al. Role of tissue factor in embryonic blood vessel development. Nature. 1996;383(6595):73–5.

    Article  CAS  PubMed  Google Scholar 

  60. Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth. 2014;58(5):515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mann KG, Brummel-Ziedins K, Orfeo T, Butenas S. Models of blood coagulation. Blood Cell Mol Dis. 2006;36(2):108–17.

    Article  CAS  Google Scholar 

  62. Grignani G, Maiolo A. Cytokines and hemostasis. Haematologica. 2000;85(9):967–72.

    CAS  PubMed  Google Scholar 

  63. Mann KG, Butenas S, Brummel K. The dynamics of thrombin formation. Arterioscler Thromb Vasc Biol. 2003;23(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  64. Lasne D, Jude B, Susen S. From normal to pathological hemostasis. Can J Anesth. 2006;53(2):S2–S11.

    Article  PubMed  Google Scholar 

  65. Byrnes JR, Duval C, Wang Y, Hansen CE, Ahn B, Mooberry MJ, et al. Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin α-chain crosslinking. Blood. 2015;126(16):1940–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weisel J, Litvinov R. Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemost. 2019;17(2):271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gersh KC, Nagaswami C, Weisel JW. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost. 2009;102(12):1169–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gillespie AH, Doctor A. Red blood cell contribution to hemostasis. Front Pediatr. 2021;9:629824.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kujovich JL. Factor V Leiden Thrombophilia. 2018.

    Google Scholar 

  70. Pike RN, Buckle AM, le Bonniec BF, Church FC. Control of the coagulation system by serpins: getting by with a little help from glycosaminoglycans. FEBS J. 2005;272(19):4842–51.

    Article  CAS  PubMed  Google Scholar 

  71. Rigby AC, Grant MA. Protein S: a conduit between anticoagulation and inflammation. Crit Care Med. 2004;32(5):S336–S41.

    Article  CAS  PubMed  Google Scholar 

  72. Bos MH, Camire RM. A bipartite autoinhibitory region within the B-domain suppresses function in factor V. J Biol Chem. 2012;287(31):26342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mast AE. Tissue factor pathway inhibitor: multiple anticoagulant activities for a single protein. Arterioscler Thromb Vasc Biol. 2016;36(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  74. Dahm A, Sandset P, Rosendaal F. The association between protein S levels and anticoagulant activity of tissue factor pathway inhibitor type 1. J Thromb Haemost. 2008;6(2):393–5.

    Article  CAS  PubMed  Google Scholar 

  75. Corral J, González-Conejero R, Hernández-Espinosa D, Vicente V. Protein Z/Z-dependent protease inhibitor (PZ/ZPI) anticoagulant system and thrombosis. Br J Haematol. 2007;137(2):99–108.

    Article  CAS  PubMed  Google Scholar 

  76. Flemmig M, Melzig MF. Serine-proteases as plasminogen activators in terms of fibrinolysis. J Pharm Pharmacol. 2012;64(8):1025–39.

    Article  CAS  PubMed  Google Scholar 

  77. Rijken D, Lijnen H. New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost. 2009;7(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  78. Dellas C, Loskutoff DJ. Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb Haemost. 2005;93(04):631–40.

    Article  CAS  PubMed  Google Scholar 

  79. Ezihe-Ejiofor JA, Hutchinson N. Anticlotting mechanisms 1: physiology and pathology. Contin Educ Anaesth Crit Care Pain. 2013;13(3):87–92.

    Article  Google Scholar 

  80. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  81. Dorgalaleh A, Daneshi M, Rashidpanah J, Roshani YE. An overview of hemostasis. In: Dorgalaleh A, editor. Congenital bleeding disorders. Cham: Springer International Publishing; 2018. p. 3–26.

    Chapter  Google Scholar 

  82. Marar T, Boffa M. Identification of a thrombomodulin interaction site on thrombin-activatable fibrinolysis inhibitor that mediates accelerated activation by thrombin. J Thromb Haemost. 2016;14(4):772–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daneshi, M., Rashidpanah, J., Narouei, F. (2023). An Overview of Hemostasis. In: Dorgalaleh, A. (eds) Congenital Bleeding Disorders . Springer, Cham. https://doi.org/10.1007/978-3-031-43156-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43156-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43155-5

  • Online ISBN: 978-3-031-43156-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics