Skip to main content

Extrinsic Calibration of Multiple Depth Cameras for 3D Face Reconstruction

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

This paper presents a reliable and robust approach for 3D face reconstruction using low-cost depth cameras. The solution is designed to withstand both camera noise and motion artifacts, making it potentially suitable for dealing with living subjects. Our method utilizes Iterative Closest Point (ICP) registration with a calibration pattern, allowing for scalable acquisition with multiple devices. Experiments are conducted adopting two low-cost depth cameras, and producing the 3D reconstruction of a dummy head to favour a metrological evaluation. The findings indicate that the suggested approach outperforms the alternative method of directly applying ICP to the facial point cloud. Additionally, the outcomes demonstrate that the low-cost solution deviates from the high-quality professional equipment by an average of 0.5 mm, showing the notable accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, M., Huang, B., Tian, G.: A comprehensive survey on 3D face recognition methods. Eng. Appl. Artif. Intell. 110, 104669 (2022)

    Article  Google Scholar 

  2. Grossi, G., Lanzarotti, R., Lin, J.: Robust face recognition providing the identity and its reliability degree combining sparse representation and multiple features. Int. J. Pattern Recognit Artif Intell. 30(10), 1656007 (2016)

    Article  Google Scholar 

  3. Sandbach, G., Zafeiriou, S., Pantic, M., Yin, L.: Static and dynamic 3D facial expression recognition: a comprehensive survey. Image Vis. Comput. 30(10), 683–697 (2012)

    Article  Google Scholar 

  4. Cuculo, V., D’Amelio, A.: OpenFACS: an open source FACS-based 3D face animation system. In: Zhao, Y., Barnes, N., Chen, B., Westermann, R., Kong, X., Lin, C. (eds.) ICIG 2019. LNCS, vol. 11902, pp. 232–242. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34110-7_20

    Chapter  Google Scholar 

  5. Hammond, P., et al.: The use of 3D face shape modelling in dysmorphology. Arch. Dis. Child. 92(12), 1120 (2007)

    Article  Google Scholar 

  6. Hallgrímsson, B., et al.: Automated syndrome diagnosis by three-dimensional facial imaging. Genet. Med. 22(10), 1682–1693 (2020)

    Article  Google Scholar 

  7. Katz, D.C., et al.: Facial shape and allometry quantitative trait locus intervals in the diversity outbred mouse are enriched for known skeletal and facial development genes. PLoS ONE 15(6), e0233377 (2020)

    Article  Google Scholar 

  8. Dolci, C., Sansone, V.A., Gibelli, D., Cappella, A., Sforza, C.: Distinctive facial features in Andersen-tawil syndrome: a three-dimensional stereophotogrammetric analysis. Am. J. Med. Genet. A 185(3), 781–789 (2021)

    Article  Google Scholar 

  9. Cao, Y., Liu, S., Zhao, P., Zhu, H.: RP-NET: a PointNet++ 3D face recognition algorithm integrating RoPS local descriptor. IEEE Access 10, 91245–91252 (2022)

    Article  Google Scholar 

  10. Zhang, J., Gao, K., Fu, K., Cheng, P.: Deep 3D facial landmark localization on position maps. Neurocomputing 406, 89–98 (2020)

    Article  Google Scholar 

  11. Kim, D., Hernandez, M., Choi, J., Medioni, G.: Deep 3D face identification. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 133–142. IEEE (2017)

    Google Scholar 

  12. Gibelli, D., Dolci, C., Cappella, A., Sforza, C.: Reliability of optical devices for three-dimensional facial anatomy description: a systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg. 49(8), 1092–1106 (2020)

    Article  Google Scholar 

  13. Peng, H., Yang, L., Li, J.: Robust and high-fidelity 3D face reconstruction using multiple RGB-d cameras. Appl. Sci. 12(22), 11722 (2022)

    Article  Google Scholar 

  14. Intel RealSense Product Family D400 Series, rev. 015. Intel Corp. (2023). https://www.intelrealsense.com/support/

  15. Canfield Scientific. VECTRA M3 3D Imaging System (2023). https://www.canfieldsci.com/imaging-systems/vectra-m3-3d-imaging-system/

  16. Lou, J., et al.: Realistic facial expression reconstruction for VR HMD users. IEEE Trans. Multimedia 22(3), 730–743 (2019)

    Article  Google Scholar 

  17. Song, S.L., Shi, W., Reed, M.: Accurate face rig approximation with deep differential subspace reconstruction. ACM Transactions on Graphics (TOG) 39(4), 34–1 (2020)

    Article  Google Scholar 

  18. Jiang, L., Zhang, J., Deng, B., Li, H., Liu, L.: 3D face reconstruction with geometry details from a single image. IEEE Trans. Image Process. 27(10), 4756–4770 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, X., Guo, Y., Yang, Z., Zhang, J.: Prior-guided multi-view 3D head reconstruction. IEEE Trans. Multimedia 24, 4028–4040 (2021)

    Article  Google Scholar 

  20. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 767–783 (2018)

    Google Scholar 

  21. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 5, 698–700 (1987)

    Article  Google Scholar 

  22. Amor, B.B., Ardabilian, M., Chen, L.: New experiments on ICP-based 3D face recognition and authentication. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 1195–1199. IEEE (2006)

    Google Scholar 

  23. Wang, C.-W., Peng, C.-C.: 3D face point cloud reconstruction and recognition using depth sensor. Sensors 21(8), 2587 (2021)

    Article  Google Scholar 

  24. Fukushima, N.: ICP with depth compensation for calibration of multiple ToF sensors. In: 2018–3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4. IEEE (2018)

    Google Scholar 

  25. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. 32, 3 (2013). https://doi.org/10.1145/2487228.2487237

    Article  MATH  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge the Laboratory of Anatomy of the Stomatognathic System at the Department of Biomedical Sciences for Health, University of Milan, for providing us with access to the images obtained using the VECTRA M3 3D Imaging System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Lanzarotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burger, J., Facchi, G., Grossi, G., Lanzarotti, R., Pedersini, F., Tartaglia, G. (2023). Extrinsic Calibration of Multiple Depth Cameras for 3D Face Reconstruction. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43153-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43152-4

  • Online ISBN: 978-3-031-43153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics