Skip to main content

Buffer-MIL: Robust Multi-instance Learning with a Buffer-Based Approach

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14234))

Included in the following conference series:

Abstract

Histopathological image analysis is a critical area of research with the potential to aid pathologists in faster and more accurate diagnoses. However, Whole-Slide Images (WSIs) present challenges for deep learning frameworks due to their large size and lack of pixel-level annotations. Multi-Instance Learning (MIL) is a popular approach that can be employed for handling WSIs, treating each slide as a bag composed of multiple patches or instances. In this work we propose Buffer-MIL, which aims at tackling the covariate shift and class imbalance characterizing most of the existing histopathological datasets. With this goal, a buffer containing the most representative instances of each disease-positive slide of the training set is incorporated into our model. An attention mechanism is then used to compare all the instances against the buffer, to find the most critical ones in a given slide. We evaluate Buffer-MIL on two publicly available WSI datasets, Camelyon16 and TCGA lung cancer, outperforming current state-of-the-art models by 2.2% of accuracy on Camelyon16.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allegretti, S., Bolelli, F., Cancilla, M., Pollastri, F., Canalini, L., Grana, C.: How does connected components labeling with decision trees perform on GPUs? In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11678, pp. 39–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29888-3_4

    Chapter  Google Scholar 

  2. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  3. Bontempo, G., Porrello, A., Bolelli, F., Calderara, S., Ficarra, E.: DAS-MIL: distilling across scales for MIL classification of histological WSIs. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 (2023)

    Google Scholar 

  4. Bruno, P., Amoroso, R., Cornia, M., Cascianelli, S., Baraldi, L., Cucchiara, R.: Investigating bidimensional downsampling in vision transformer models. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) Image Analysis and Processing - ICIAP 2022, pp. 287–299. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06430-2_24

  5. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9650–9660 (2021)

    Google Scholar 

  6. Chen, R.J., et al.: Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16144–16155 (2022)

    Google Scholar 

  7. Chen, R.J., et al.: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging 41(4), 757–770 (2020)

    Article  Google Scholar 

  8. Cornia, M., Baraldi, L., Cucchiara, R.: Explaining transformer-based image captioning models: an empirical analysis. AI Commun. 35(2), 111–129 (2022)

    Article  MathSciNet  Google Scholar 

  9. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997)

    Article  MATH  Google Scholar 

  10. Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., Smola, A.: Correcting sample selection bias by unlabeled data. In: Advances in Neural Information Processing Systems, vol. 19 (NIPS) (2006)

    Google Scholar 

  11. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, vol. 80, pp. 2127–2136. PMLR, July 2018

    Google Scholar 

  12. Kumar, N., Gupta, R., Gupta, S.: Whole Slide Imaging (WSI) in pathology: current perspectives and future directions. J. Digit. Imaging 33(4), 1034–1040 (2020)

    Article  Google Scholar 

  13. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14318–14328 (2021)

    Google Scholar 

  14. Lovino, M., Bontempo, G., Cirrincione, G., Ficarra, E.: Multi-omics classification on kidney samples exploiting uncertainty-aware models. In: Huang, D.-S., Jo, K.-H. (eds.) ICIC 2020. LNCS, vol. 12464, pp. 32–42. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60802-6_4

    Chapter  Google Scholar 

  15. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  16. Maksoud, S., Zhao, K., Hobson, P., Jennings, A., Lovell, B.C.: SOS: selective objective switch for rapid immunofluorescence whole slide image classification. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3862–3871 (2020)

    Google Scholar 

  17. Panariello, A., Porrello, A., Calderara, S., Cucchiara, R.: Consistency-based self-supervised learning for temporal anomaly localization. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision - ECCV 2022 Workshops, vol. 13805, pp. 338–349. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25072-9_22

  18. Ponzio, F., Urgese, G., Ficarra, E., Di Cataldo, S.: Dealing with lack of training data for convolutional neural networks: the case of digital pathology. Electronics 8(3) (2019)

    Google Scholar 

  19. Roberti, I., Lovino, M., Di Cataldo, S., Ficarra, E., Urgese, G.: Exploiting gene expression profiles for the automated prediction of connectivity between brain regions. Int. J. Mol. Sci. 20(8), 2035 (2019)

    Article  Google Scholar 

  20. Shao, Z., et al.: TransMIL: transformer based correlated multiple instance learning for whole slide image classification. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 34, pp. 2136–2147 (2021)

    Google Scholar 

  21. Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plann. Inference 90(2), 227–244 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P., Kawanabe, M.: Direct importance estimation with model selection and its application to covariate shift adaptation. In: Advances in Neural Information Processing Systems (NIPS), vol. 20 (2007)

    Google Scholar 

  23. Tu, M., Huang, J., He, X., Zhou, B.: Multiple instance learning with graph neural networks. In: ICML Workshop on Learning and Reasoning with Graph-Structured Representations (2019)

    Google Scholar 

  24. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37–57 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, J., Hu, J.: Image segmentation based on 2D Otsu method with histogram analysis. In: International Conference on Computer Science and Software Engineering, vol. 6, pp. 105–108. IEEE (2008)

    Google Scholar 

  26. Zhang, W., Li, J., Liu, L.: Robust multi-instance learning with stable instances. In: ECAI 2020: 24th European Conference on Artificial Intelligence (2019)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from DECIDER, the European Union’s Horizon 2020 research and innovation programme under GA No. 965193, and from the Department of Engineering “Enzo Ferrari” of the University of Modena through the FARD-2022 (Fondo di Ateneo per la Ricerca 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Bolelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bontempo, G., Lumetti, L., Porrello, A., Bolelli, F., Calderara, S., Ficarra, E. (2023). Buffer-MIL: Robust Multi-instance Learning with a Buffer-Based Approach. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43153-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43152-4

  • Online ISBN: 978-3-031-43153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics